
PL-TR-97-1119 PL-TR-
97-1119

INTELLIGENT FUZZY CONTROLLER FOR
SATELLITE GROUND STATION APPLICATIONS

Roy George, PhD

Department of Computer Science
Clark Atlanta University
Atlanta, GA 30314

September 1997

Final Report

WßWß
wMßM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19971210 097 „^
PHILLIPS LABORATORY
Space Technology Directorate
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

PL-TR-97-1119

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization
no longer employs the addressee, please notify PL/VTS, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

WKJ

ROSS WAINWRIGHT
Project Manager

'<(%-

FOR THE COMMANDER

m STOVER, LT COL, USAF
Chief, Space System Technologies
Division

BRUCE A. THIEMAN, COL, USAF
Deputy Director, Space Technology

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and conjpleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1997

4. TITLE AND SUBTITLE

Intelligent Fuzzy Controller for Satellite Ground Station Applications

6. AUTHOR(S)

Roy George, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Computer Science
Clark Atlanta University
Atlanta, GA 30314

3. REPORT TYPE AND DATES COVERED
Final; 9/95 to 9/97

FUNDING NUMBERS
C: F29601-95-K-0022
PE: 62601F
PR: 8809
TA: VT
WU: OH

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Phillips Laboratory
3550 Aberdeen Ave. SE
Kirtland AFB, NM 87117-5776

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

PL-TR-97-1119

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The Department of Computer Science at Clark Atlanta University investigated the use of genetic algorithms as a technique for automating
the development of fuzzy logic controllers. The derivation of fuzzy controller rule-bases is relatively straightforward; however, the tuning of these
controllers is a difficult process. In the first phase of this research, a genetic algorithm was used to tune the fuzzy controller. The genetic algorithm
searches through the space of all membership functions to select the functions that produce the best control action. In the second phase of this
project, the genetic algorithm was used to automatically derive the rule-base and membership functions. A full-featured research prototype was
developed. The methodology and prototype were validated on typical control and classification problems. This research establishes a methodology
for the rapid development of robust knowledge-based control systems in complex, poorly understood domains.

14. SUBJECT TERMS
Knowledge-based control systems, fuzzy logic controller, fuzzy logic rulebase, genetic

algorithm, real valued genetic algorithm, automated controller tuning

15. NUMBER OF PAGES
94

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500 Ross Wainwright
(505) 846-8986 ext. 319

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

28-102

Table of Contents

1. Fuzzy Logic Controllers 1

1.2 Fuzzy Controller Development Using the TIL-Shell 7

1.2.1 The Pendulum Controller 7

2. Genetic Algorithms 8

2.1 Background 8

2.2 Evaluation of Genetic Algorithm Packages 9

3. Tuning Fuzzy Logic Controllers Using Genetic Algorithms 10

3.1 Results 12

4. Generating Fuzzy Logic Controllers Using Genetic Algorithms 14

5. System Verification 16

5.1 Results 16

6. Conclusions and Future Work 18

References 21

Appendix A: Pendulum Controller Developed Using the TIL-Shell 22

Appendix B: Real Valued Genetic Algorithm 27

Appendix C: Objective Function for Automatically Tuning the Fuzzy

Controller 39

Appendix D: Sample Run of the Genetic Algorithm Tuner 69

Appendix E: Rule Space for the Pendulum Balancing Controller 74

Appendix F: Rules Evolved for the Pendulum Problem 76

Appendix G: Rule Space for the Tank Recognition Problem 79

Appendix H: Rules Evolved for the Tank Recognition Problem 84

in

Executive Summary

The objective of this research was to investigate a methodology for the automatic

development of fuzzy controllers. Fuzzy controllers are a class of knowledge-based

controllers that use fuzzy logic to model control actions. They are applicable in poorly

understood or complex non-linear problems that defy control theory-based solutions. A

number of space applications are amenable to solution using fuzzy controllers, including

battery charger control, fault diagnosis, motion control, etc. The aim was to develop a

generalized domain independent system.

The two principal components of a fuzzy controller are the fuzzy rule-base and the fuzzy

membership functions. The primary objective was to develop an automatic tuning

mechanism for the fuzzy rule-base (i.e., automatically tune the membership functions)

using the genetic algorithm mechanism. A secondary objective was to investigate the

applicability of genetic algorithms to automatically tune and generate both the fuzzy rule-

base and membership functions. The genetic algorithm is a randomized search technique

that uses an evaluation function to guide the search process.

As an initial study a fuzzy controller package, the TIL-Shell from Togai Infralogic, was

studied. A typical control problem, the pendulum balancing problem, was implemented

using the TIL-Shell. Issues relating to the application of genetic algorithms to fuzzy

controllers were examined. A modified version of the genetic algorithm, the real valued

genetic algorithm, was implemented.

IV

In the first .phase of this project, the rule-base (developed for the pendulum balancing

problem) was tuned using the genetic algorithm. The aim was to tune the fuzzy rule-base °

by using the genetic algorithm to iteratively improve the membership functions. In other

words, the genetic algorithm searches through the entire space of membership functions

attempting to minimize the error in the output of the fuzzy controller. Excellent tuning

results with high precision were obtained through this process. A drawback of this

approach, however is that it presupposes the existence of a fuzzy rule-base.

In the second phase, the approach was generalized to automatically derive both the fuzzy

rule-base and the membership functions using the genetic algorithm. The genetic

algorithm searches through a space of all possible rules and membership functions to

derive a fuzzy controller with ideal performance. As previously, the genetic search is

guided by the minimization of the error between the expected output and the actual

output produced by the fuzzy controller. The full-featured system prototype was

developed and its performance verified with good results on both control and

classification problems. Though scale-up issues were not extensively investigated in this

effort, this approach promises good results for large, poorly understood, and complex

control applications.

VI

1. Fuzzy Logic Controllers

Fuzzy logic has been widely applied in industrial control applications. This has been the

result of large complex system applications that make precise measurements and

modeling difficult. Knowledge-based controllers using linguistic expressions and terms

are therefore a viable alternative. A qualitative modeling technique that can been model

the human problem solving process is fuzzy logic. The fundamental idea behind fuzzy

logic controllers is the use of fuzzy logic to model and develop industrial control

applications. Unlike traditional knowledge-based systems, fuzzy control does not use the

iterative execution of instructions, but rather the execution of a number of rules in

parallel - fuzzy inference.

The following represents a typical relationship (rule) expressed in a fuzzy system, a

"ground" truth (condition), and the inference (action) that may be derived from these

relationships.

Rule IF the distance between cars is small, reduce speed

Condition The distance between cars is 100 ft

Action Reduce Speed Considerably

The action is the result of inference. In a fuzzy controller, there would be a number of

applicable rules that require each inference rule to be combined in some manner and the

result converted to a numerical value. This numerical value is then used to control the

system.

There are four classical methods of designing a fuzzy controller [Terano]:

• Extraction of Domain Information from Experts: The experience of skilled operators

or the knowledge of control engineers is assimilated and brought together in the form

of IF-THEN rules.

• Building Operator Models: In cases where the skill of operators is hard to quantify,

their actions are modeled using IF-THEN rules.

• Deriving Rules Through Learning: If a plant model exists, fuzzy rules can be learned

from an environment in which there are no experts.

• Development of a Fuzzy Model of the Plant: A fuzzy model of the system is built and

fuzzy control rules are derived from the control objectives and the plant model.

1.1 Fuzzy Controller Development

The principal components of the fuzzy controller are the fuzzy rule base, the inference

mechanism, and the input and output interfaces. The rule base defines the actions of the

fuzzy controller. There are four steps in constructing a fuzzy rule base:

• Identify and name the input variables and their ranges.

• Identify and name the output variables and their ranges.

• Define a fuzzy membership function for each of the input and output variables. The

membership functions assign a value of inclusion to every possible input value. The

inclusion is with respect to predefined linguistic ranges that cover the entire or parts

of the input and output ranges.

• Construct a rule base that will govern the controllers operation.

• Determine how the control actions will be combined to form the executed action

(defuzzification).

A number of alternate defuzzification techniques have been proposed. In this project, we

utilized a Mamdani-Type Fuzzy Controller [Mamdani] that uses centroid defuzzification.

The centroid defuzzification rule is given below:

Output = E Xi*JUA[Xi]/EHAM

where JC/, is the signal and JU^fXi], is the membership of X» in the linguistic quantifier,

A.

Other commonly used defuzzification schemes include the Takagi-Sugano model

[Takagi]. The difference between the Sugeno and the Mamdani model is that the Sugeno

model has a mathematical function as the rule consequent, whereas in the Mamdani

model each rule has a fuzzy consequent.

The principal components of the fuzzy controller are shown in Figure 1.

INPUT

ACTION
INTERFACE
 *

■>
SYSTEM

FUZZY RULE
BASE

FUZZY
CONTROLLER

OUTPUTS

CONDITION
INTERFACE

Figure 1: Block Diagram of a Fuzzy Controller

The centroid defuzzification algorithm is implemented as below. Note that a fuzzy

controller simulation has to be implemented as part of the genetic algorithm evaluation

function.

n

void calcMemAreaCent(member, lower, upper, Area, Centroid)
struct memberObject *member;
double lower;
double upper;
double *Area;
double *Centroid;
{

double AreaOne;
double AreaTwo;
double CentroidOne;
double CentroidTwo;

switch(member -» type)
{

case TRIANGULAR:
♦Area = 0.5 (member-* right Vertex - member-» leftVertex)(member-»mu);
CentroidTwo = ((member-»rightVertex - member-» left Vertex) +

(member-»rightVertex - member-» left Vertex);
♦Centroid = member-»rightVertex - CentroidTwo;

case S_FUNCTION:
AreaOne = 0.5 (member-»rightVertex - member-»leftVertex)(member-»mu);
AreaTwo = (upper - member-»centerVertex)*(member-»mu);
*Area = AreaOne + AreaTwo;

CentroidOne = member-» centerVertex - ((member-» centerVertex -
member-» left Vertex)/3.0);

CentroidTwo = upper - (upper - member-»centerVertex)/2.0;
If(*Area>0.0)
{

Centroid = ((AreaOne*CentroidOne)+(AreaTwo*CentroidTwo))/(*Area);
} else
{

*Centroid = 0.0;
}

case Z_FUNCTION:
AreaOne = (member-»centerVertex - lower) *(member-»mu);
AreaTwo = 0.5*(member-»rightVertex - member-»centerVertex)*(member-»mu);
♦Area = AreaOne + AreaTwo;

CentroidTwo = member-»centerVertex - ((member-»rightVertex -
member-» centerVertex)/3.0);

CentroidOne = lower + (member-»centerVertex - lower)/2.0;
If(*Area>0.0)
{

Centroid = ((AreaOne%CentroidOne)+(AreaTwo+CentroidTwo))/(^Area);
} else
{

♦Centroid = 0.0;
}

default:
fprintf(stderr, "\ncalcMemAreaCent: Error in the case. \n");
exit(l);

.}

double CalcOutCentroid(Var)
/* this function calculated the overall centroid of a variable */
{

int i;
double Area, Centroid, TotalArea, TotalCentArea;

Area = 0.0;
Centroid = 0.0;
TotalArea = 0.0;
TotalCentArea = 0.0;

For (i=0; i,Var->numOfMembers; i++)
{

calcMemAreaCent(&(Var->member[i], Var->lowerBound, Var->upperBound, &Area,
&Centroid);
TotalArea = TotalArea + Area;
TotalArea = TotalCentArea + (Area*Centroid);

}

if (TotalArea > 0.0)
{

return(TotalCentArea/TotalArea);
}
else
{

return(O.O);

Listing 1 : Genetic Algorithm Evaluation Function

p.

1.2 Developing Fuzzy Controllers with the TIL-Shell

The TIL-Shell is a software development environment that provides a way of describing

fuzzy logic systems, testing such systems through simulation, and compiling the system

for further implementation on the target processor. A fuzzy system is defined in the TIL-

Shell using a number of editors. Variables and rulebases are added and connected in the

project editor. Membership functions are defined in the variable or member editors, and

the rulebase is defined in the rulebase editor. The graphical project editor is the top level

editor for creating and manipulating objects. It provides a block diagram view of the

fuzzy system.

1.2.1 Pendulum Controller

The pendulum controller is a simplified control system for balancing a pendulum. The

system is developed using the TIL-Shell. Appendix A, shows the rule base developed

and the membership functions defined.

A total of nine rules were required for the pendulum controller. The rules are as follows:

IF error IS negative AND derror IS negative THEN current IS positive END
IF error IS negative AND derror IS zero THEN current IS positive END
IF error IS negative AND derror IS positive THEN current IS zero END

IF error IS zero AND derror IS negative THEN current IS positive END
IF error IS zero AND derror IS zero THEN current IS zero END
IF error IS zero AND derror IS positive THEN current IS negative END

IF error IS positive AND derror IS negative THEN current IS zero END
IF error IS positive AND derror IS zero THEN current IS negative END
IF error IS positive AND derror IS positive THEN current IS negative END

The definitions of the fuzzy functions (in this case positive, zero.and negative, for each of

the three variables, error, derror, and current) directly affect the performance of the

controller. The tuning employed here consists of manually changing the definition of

each fuzzy function and quantifying the effect on the controlled variable. This process is

laborious and infeasible for large controllers.

2. Genetic Algorithms

2.1 Background

Genetic Algorithms (GAs) are a class of iterative, randomized search procedures capable

of adaptive and robust search over a wide range of space topologies. They are modeled

after the adaptive emergence of biological species from evolutionary mechanisms

[Holland]. GAs have been successfully applied in such diverse fields as image

processing, scheduling, and engineering design. Detailed introduction to GAs and their

applications can be found in [Goldberg, Davis, Eberhart].

The terminology used in GAs is mostly borrowed from the field of genetics. A single

solution is called an organism and the set of solutions is termed a population. A

generation denotes a population during an iteration. A string representation of an

organism is called a chromosome. Each substring representing a feature of the solution

is called a gene. The quality of an organism is computed through an evaluation or

fitness function. Two mechanisms of reproduction are used- 1. crossover, and 2.

mutation. In crossover, two parent organisms are spliced together to create a new

organism. In mutation, arbitrary bits in the organism are flipped. Mutation is generally

performed at a much lower rate than crossover.

The operational characteristic of GAs can be represented by the following algorithm:

• Create a random population of initial solutions
• Compute the fitness of each organism
• Until Convergence Do:

• Create next generation by stochastically applying
• Fitness Propotional Selection
• Crossover
• Mutation
On members of the current population
• Compute fitness of members of the new population
• Replace current population by the new population

• End Do

2.2 Evaluation of GA Packages

Two public domain GA packages, SGA-C and Splicer, were evaluated for robustness,

ease of usage, and platform dependencies. Splicer has a modular architecture that

includes a Genetic Algorithm kernal, Representation Modules, and a User Interface

Libarary. It requires a UNIX platform with X-Windows. SGA-C is a text-based

extension of the Simple GA program [Goldberg]. The primary platform is UNIX.

Comparative evaluation of the two packages resulted in the selection of SGA-C. Splicer

had a number of run-time problems associated with the graphical user interface. SGA-C

had better performance on sample problems and displayed greater robustness.

Both SGA-C and Splicer are based on binary representation of the problem domain. The

mutation operator has significant effect on the solution. The objective of mutation is to

achieve a local perturbation that moves the solution out from a local minima. The binary

nature of this process creates large scale effects on the solution rather than the effect of

noise. This effect is known as the binary hill problem. A solution to this is to use a real

valued GA (REGA) where mutation is achieved by the addition of noise to the solution.

Several previous studies have noted the sensitivity of membership functions and shapes

on the behavior of the fuzzy controller. The use of a real valued GA could reduce the

sensitivity of the tuning process. A real valued GA was developed for the UNIX

platform (Appendix B).

3. Tuning Fuzzy Logic Controllers Using Genetic Algorithms

A number of studies have shown that Fuzzy Logic Controllers (FLC) are sensitive to the

characteristics of the membership function. Determining the membership function is an

iterative process and requires engineering compromises. Automatic derivation of

membership functions can ease this situation considerably. In this phase of the project,

we used the genetic algorithm paradigm to automatically derive the membership

functions. Before the mechanics of this approach are discussed, the following points

have to be noted:

• Fuzzy sets of a input or output variable are ordered into regions of differing areas.

Ideally, the area covered by the fuzzy sets decreases as the domain converges on the

desired operating region. This has the effect of reducing the number of rules

necessary to control the system since a single rule may handle all the device states in

the outlier regions.

• The degree of overlap at the region of preferred performance provides fine tuning and

control by the rules. This ensures that multiple rules will execute as the problem state

10

m„ves tö the left or right of the operating region. For example, in the pendnlnm

balancing problem, «he high degree of overlap ensures that when the system is in the „

optimal state (the pendnlnm is bataced), any small changes are immediately detected

and handled.

. The number of fuzzy functions is always an odd number.

The fundamental ideal behind using GAs to tune the FLC rule base is simple. Recall that

the GA attempts to converge to near optimal solutions using the fitness function. In this

application, the fitness function is the FLC. The GA searches the space of membership

functions, selecting only those membership functions that provide improved control. The

desired input-output value pairs are provided to the GA. The root mean square error

between the output value generated by the simulated FLC (the evaluation function) and

the actual output value is used to drive the genetic algorithm into tuning the membership

functions further. In other words, we are attempting to tune a black box (using a GA) so

that it exhibits the desired characteristics indicated by the input-output pairs. For best

results the input-output pair data should be representative of the control surface.

Three classes of membership functions are considered by the genetic algorithms: the Z,

triangular, and S functions. Any function may be specified by three vertices: a left

anchor, a mid-point, and a right anchor. The GA searches domain of membership

functions (vertices and shape) for those that give the lowest root mean square error

(indicating closeness to the supplied input-output pairs). The rule base is the set of rules

11

derived in Section 1.2.1. Figure 2 represents the arrangement of vertices in a

chromosome.

LA M RA

NEGATIVE -+< ZERO

< ERROR

LA : LEFT ANCHOR
M : MID-POINT
RA : RIGHT ANCHOR

Figure 2 : Interpreting the Chromosome - Fuzzy Membership Functions

3.1 Results

A fuzzy controller tuner was developed using the SGA-C program. The pendulum-

balancing problem was used to test the validity of the controller. Data was gathered by

first defining the problem on the TIL-Shell and recording the input-output data pairs to

the pendulum. Subsequently, this data was used as the input to the GA-based tuner.

There are three components to the GA-based tuning process:

1. A control rulebase consisting of IF X (AND/OR) Y THEN Z.

2. A data file consisting of input-output data pairs.

3. A GA-based tuning mechanism.

12

The control rulebase and the fuzzy membership functions together form the evaluation

function for the GA. The control rule base is the set of rules derived in 1.2.1. Appendix

C gives a listing of the evaluation function (simulated GA). Appendix D shows sample

runs of the tuner. For practical purposes a full run of the GA has not been included, but

the sample indicates the continuous improvement of the control function (through the

modification of the parameters of the membership functions). For instance, in Generation

4, the fitness is 0.430556, which by Generation 199 has improved to 0.992738. The

maximum fitness possible is 1.0.

In comparison with the manual system, the automated system has two advantages. The

obvious one is the ease of derivation of membership functions. The second is of

precision. It is possible for the user to specify the precision (number of bits) required to

describe each input or output membership function vertex. This gives higher precision

than the TIL-Shell, where compiler precision is a limiting factor. The system that has

been developed is very general. Any fuzzy controller (irrespective of the domain) may

be tuned. The only requirements of the system are a representative sample of the input

and output data pairs for the controller, and a set of fuzzy rules describing the control

strategy. This approach would be most useful in situations where the domain expert that

has already generated the control rulebase. The evolutionary approach eases the

difficulty of tuning the existing rulebase.

13

4. Generating Fuzzy Controllers Using Genetic Algorithms

In the previous sections, we described the development of a fuzzy controller tuner using

evolutionary mechanisms. The features of this tuner were the following:

1. Evolutionary learning of fuzzy membership functions for existing fuzzy controller

2. Tightly coupled GA-FCS mechanism

3. Study of alternate GA mechanisms to improve the learning rate.

The evolutionary tuner was tested on the pendulum balancing problem and highly

accurate tuning v/as achieved. However, this technique is limited to problems for which

a fuzzy rulebase already exists. It limits the scope of applicability considerably since this

(approach) presupposes the existence of such a rulebase. There are many problems in

classification, control, and decision making for which the structure of the problem is

unknown or poorly understood (i.e., the fuzzy rules that govern the control/decision

process are unknown due to the absence of domain expertise). This makes the

evolutionary tuning process developed in the first phase of the project impracticable. The

requirement here is for a system that can learn the structure of the problem (i.e., the fuzzy

rules) and achieve the tuning of these rules automatically (as in the first phase).

The objective is to develop an evolutionary system that could automatically learn the

structure of problems of arbitrary complexity. The problem can be subdivided into two

related sub-problems:

1. Automatic generation of fuzzy rules

2. Tuning of the generated rules

Note, that the prime objective is the generation of articulated control systems (as opposed

to systems generated using neural networks). For the automated generation of fuzzy rules

a brute force technique was employed. The genetic organism representation consists of

every possible combination of inpi-' and output linguistic quantifiers (chromosomal

representation, one bit for each rule). The assumption made was that there are three

membership functions for every input and output variable. Thus for a system consisting

of m inputs and outputs, there are f possible rules. The rule generation part of the

organism will thus have 4m bits.

Figure 3 is a representation of the GA organism. It is a generalization of Figure 2, with

additional genetic material added for the representation of rules.

LA M RA
NEGATIVE ZERO

MEMBERSHIP
FUNCTIONS

+><- -RULES-

LA :LEFT ANCHOR
M : MID-POINT
RA : RIGHT ANCHOR

Figure 3: Interpreting the Chromosome - Fuzzy Rulebase and Membership Functions

The GA mechanism is used to search through the space of all possible rules and valid

membership functions to obtain the best control system. An important objective is rule

minimization. Solutions with minimal number of rules are preferred to controllers with a

15

larger number. A rule generator was designed and coded. The rules are indexed into a 2-

dimensional linked list. The rules have been integrated into the genetic algorithm

environment.

5. System Verification

The system was exhaustively tested on the pendulum balancing problem and a tank

recognition problem. The pendulum balancing problem is a two input - one output

problem. A complex non-linear relationship exists between the input and output

variables.

5.1 Results

Pendulum Balancing Problem : The control problem is a two input (Error and Derror) -

one output (Current) problem. The system generates the set of all possible rules that can

describe the input-output relationship. This rule space (generated automatically by the

system developed) is shown in Appendix E. There are three membership functions

defined per variable - negative, zero, and positive. The rule space consists of 45 rules

and 9 membership functions. The membership functions may be S-functions, Z-

functions, or triangular.

The results of the evolutionary generation of the fuzzy control system are detailed in

Appendix F. The system has reduced the rule set to six rules. The definition of the fuzzy

memberships are also given in Appendix F. The performance results are very good with

a Mean Square Error of 0.039.

TsnV UPMPnition Problem: The problem considered is the recognition of tanks in a

battlefield based on the audio sensor information. The data consists of three inputs and

one output. A complex non-linear relationship exists between the input and output

variables; however, it is not known what the relationship is. A set of apriori classified

data is used to train and subsequently test the system. At the start, unlike the pendulum

balancing problem (which was manually coded and tested), it was not known how many

rules would be required to describe the system. The system generates the set of all

possible rules that can describe the input-output relationship. This rule space (generated

automatically by the system developed) is shown in Appendix F. Note that there are

three membership functions defined per variable - negative, zero, and positive. The rule

space consists of 189 rules and nine membership functions. The membership functions

may be S-functions, Z-functions, or triangular. The results of the evolutionary fuzzy

control system are detailed in Appendix F. Note that the system has reduced the rule set

to seven rules. The performance results are reasonably good with a Mean Square Error of

0.414 and a Floor-Ceiling Mean Square Error of 0.498. A recognition rate of 76% is

achieved on the test data. The larger error is due to the discretization of the output of the

fuzzy controller required by the classification problem. Another issue is that the full tank

recognition problem was not utilized (i.e., the entire input parameter set). This approach

attempted the classification process using the three principal components of the problem.

Further tuning and the use of the entire parameter set can improve the recognition rate.

17

A serious drawback with this approach is the combinatorial explosion (of possible rules)

when the control problem has a large number of inputs and outputs. While the

combinatorics is not a problem for the genetic algorithm, adequate representation of the

rule set is problematic. In this implementation, rules are recursively generated for the

complete set of input and output variables. Even small sets of these variables can result

in the computational overhead of very large organisms.

6. Conclusions and Future Work

Theoretical issues regarding the application of genetic algorithms to the development of

fuzzy logic controllers were studied in this research effort. This study has resulted in the

development of a significant research prototype. A fuzzy rulebase was developed using a

commercial fuzzy controller shell (the TIL-Shell) and tuned manually and automatically.

The results of the automatic tuner are good, and deliver much higher precision than the

manual tuner. There is also a significant reduction in the effort required in producing

robust controllers. However, this approach presupposes the existence of a fuzzy

controller rulebase. This is always not the case. To further generalize the approach, the

prototype evolutionary fuzzy control system was enhanced (though not part of the initial

project plan) to generate both fuzzy rules and tune the membership functions

simultaneously.

In general terms, this approach is applicable across a wide spectrum of practical

problems. The objective of this research was to investigate space applications for this

technique. Two space applications suitable to the sponsor were considered. One of these

18

applications involved the control of smart structures. Data was not immediately available

for this application. In the other application Lockheed Martin supplied controller

simulation data for control of the null position of a solar drive encoder and to set the

encoder initialization bits. The results of the evolutionary fuzzy controller were

inconsistent with large mean square errors. Table 1 shows a portion of the Lockheed

Martin data.

Time +Y_Angle +Y_Step +Y_Plane_Error

0 0.1758 -1.0 -4.771

1 0.1758 0.0 -4.771

2 0.1758 1.0 -4.771

3 0.1758 2.0 -4.771

4 0.1758 3.0 -4.771

Table 1: Solar Drive Control Data

The +Y_Step is the output variable and the others the input variables. Two points about

this data are noteworthy. First, Time is a monotonically increasing variable that

determines +Y_Step. The evolutionary GA controller does not handle monotonically

increasing or decreasing variables well. Second, the output is dependant on Time alone.

The unsatisfactory results produced by the GA-based controller are related to the nature

of this data. This application does not lend itself to a knowledge-based controller

solution. However this is a feature of the specific problem domain rather than a

drawback of the technique. Further interaction with the Phillips Laboratory would reveal

a wider class of problems that can be easily solved by this technique.

19

Currently, the prototype is capable of generating valid fuzzy controllers in cases where

the number of inputs and outputs is small. In general good results were obtained on both

classification and control problems. A problem associated with the GA approach is that

the space of valid controllers is very small, and typical GA operations of mutation and

crossover can quickly move a controller from a valid to an invalid region. This does not

give sufficient time for the GA to iteratively improve the solution. A solution could be

the development of semantically driven mutation and crossover operations that narrow

the search space rapidly.

As mentioned previously representation is a significant issue when dealing with large

numbers of inputs and outputs. We have done preliminary investigation on an alternate

methodology that overcomes the combinatorics in the representation - the Combs

technique, with good results. In the Combs technique every input is mapped to every

output. The resulting system has linear complexity. Tuning such a system is more

difficult, but the GA-based tuner would ease this situation. This is a fruitful area for the

investigation into complex fuzzy system applications.

20

References

[Davis] Davis, L., (Ed.), Handbook of Genetic Algorithms, Van Nostrand

Reinhold, New York, 1991.

[de Silva] de Silva, C. W., "Considerations of Hierarchical Fuzzy Control,"

Theoretical Aspects of Fuzzy Control, Nguyen, H., Sugeno, M., Tong,

R., and Yager, R. R. (Eds.), John Wiley & Sons, NY, (1995).

[Eberhart] Eberhart, Russ, Simpson, Pat, and Dobbins, Roy, Computational

Intelligence PC Tools, AP Professional, Cambridge, MA (1996).

[Goldberg] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, Reading, MA, 1989.

[Holland] Holland, J. H., Adaptation in Natural and Artificial Systems, University

of Michigan Press, Ann Arbor, MI, 1975.

[Mamdani] Mamdani, E., and Assilian, S., "An Experiment in Linguistic Synthesis

with a Fuzzy Logic Controller," International Journal of Man-Machine

Studies, 7(1), pp. 1-13,1975.

[Takagi] Takagi, T, and Sugeno, M., "Fuzzy Identification of Systems and its

Applications to Modeling and Control," IEEE Trans, on Systems, Man,

and Cybernetics, 15(1), pp. 116-132, 1985.

[Terano] Terano, Toshiro, Asai, Kyogi, and Sugeno, M.., Applied Fuzzy Systems,

AP Professional, Cambridge, MA, 1994.

21

Appendix A

Pendulum Controller Developed Using the TIL-Shell

PROJECT Project 1
OPTIONS

ICONCOLOR= 1263 2256
MODE="NORMAL"
CHANGEID=2690521803

END

/* The membership functions were defined using the membership editor */
/* Membership functions for Error */

VAR Error
OPTIONS

ICONPOS=0.5,0.5
FULLGRAPHICS="ON"
GRIDSHOW^'OFF"
GPJDSNAP="OFFn

GRIDSPACE=0.2,0.2
NUMBER=3
SCALE=50
TOUCHED="ON"

END
TYPE float
MJN-1
MAXI

MEMBER N
OPTIONS

ICONCOLOR=16711680
END
POINTS -1,1 -0.58024691358,0.989583333333 0.037037037037,0

END

MEMBER Z
OPTIONS

ICONCOLOR=65407
END
POINTS -0.446913580247,0 0.140740740741,1 0.5,0

END

MEMBER P
OPTIONS

ICONCOLOR=255

22

END
POINTS 0.0172839506173,0 0.264197530864,1 1,1

END
END

/* Membership functions for dError */
VAR dError

OPTIONS
ICONPOS=0.5,2.5
GRIDSHOW="OFF"
GRIDSNAP=MOFF"
GPJDSPACE=0.2,0.2
NUMBER=3
SCALE=50
TOUCHED="ON"

END
TYPE float
MIN-1
MAXI

MEMBER N
OPTIONS

ICONCOLOR=16711680
END
POINTS -1,1 -0.257731958763,1 0.0103092783505,0

END

MEMBER Z
OPTIONS

ICONCOLOR=65407
END
POINTS -0.365979381443,0 -0.20618556701,0.987341772152 0.5,0

END

MEMBER P
OPTIONS

ICONCOLOR=255
END
POINTS -0.0257731958763,0 0.515463917526,1 1,1

END
END

/* Membership functions for Current */
VAR Current

OPTIONS
ICONPOS=3,1.5

23

GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.2,0.2
NUMBER=3
SCALE=50
TOUCHED="ON"

END
TYPE float
MIN-1
MAXI

MEMBER N
OPTIONS

ICONCOLOR=16711680
END
POINTS -1,1 -0.551546391753,1 0.025773T958763,0

END

MEMBER Z
OPTIONS

ICONCOLOR=65407
END

POINTS -0.278350515464,0 -0.134020618557,0.987341772152 0.417525773196,0

END

MEMBER P
OPTIONS

ICONCOLOR=255
END
POINTS 0.0257731958763,0 0.5,1 1,1

END
END

RULEBASE Pend_Rules
OPTIONS

ICONPOS=1.5,1.5
END

RULE Rulel
IF (Error IS N) AND (dError IS N) THEN

Current = P
END

RULE Rule2

24

IF (Error IS Z) AND (dError IS N) THEN
Current = P

END

RULE Rule3
IF (Error IS P) AND (dError IS N) THEN

Current = Z
END

RULE Rule4
IF (Error IS N) AND (dError IS Z) THEN

Current = P
END

RULE Rule5
IF (Error IS Z) AND (dError IS Z) THEN

Current = Z
END

RULERule6
IF (Error IS P) AND (dError IS Z) THEN

Current = N
END

RULE Rule7
IF (Error IS P) AND (dError IS P) THEN

Current = N
END

RULE Rule8
IF (Error IS Z) AND (dError IS P) THEN

Current = N
END

RULE Rule9
IF (Error IS N) AND (dError IS P) THEN

Current = Z
END

END

DEBUG Debugl
END

CONNECT
FROM Error

25

TO PendRules
END

CONNECT
FROM dError
TO Pend_Rules

END

CONNECT
FROM Pend_Rules
TO Current

END
END

26

APPENDIX B
REAL VALUED GENETIC ALGORITH (ReGA)

I* Real Valued Genetic Algorithm */
/* Written by : Radhakrishnan Srikanth, Roy George */
/* Department of Computer Science */
/* Clark Atlanta University */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

#defineeq =
#defineMAXINT 777777

typedef float GeneType;
typedef struct pop { I* define item to hold the value and the fitness */

GeneType 'chromosome;
float fitness;
}PopType;

void InitializeO; I* Initializes the members of the population */
void SrsSelectO; /* Selects members of the Next Generation */
void CrossOverO; /* Selects and CrossesOver Chromosomes with a given probability */
void CrossOverChromosomeO; /* Crossover generates two new children from given Parents */
void MutateO; I* Mutates Chromosomes in the population */
void MutateChromosomeO; /* Mutates parts of the chromosome */
void CalculateFitnessO; /* Calculates fitness of the chromsome */
void PrinlReportO; /* Prints Report */
void PrintChromosomeO; /* Prints induvidual Chromosome */
void CorssOverO; /* Performs Crossover */
void CopyChromosomeO; /* Copies a give chromosome */
float ObjectiveFunctionO; I* Calculates the fitness of a chromosome*/
void SRSelectO; I* Selects the new population */
void StatisticsO; I* Keeps the Statistics for each generation */
void InraalizeDataO; /* User written routine which reads data*/
void TestFunctionO; /* Prints the output */

int PopulationSize; /* Population Size */
int NumberOfParameters; I* Number of Parameters per Chromosome */

27

"* see<*' /* The random seed that is used for generating
random numbers*/
float CrossOverProbability; /* Stores the CrossOver Probility */
float MutateProbability; /* Stores the Mutation Probility */
float range=l; /* Upper bound of range of the mutation amount */
int CrossOverStat=0; /* Number of Crossovers */
int MutationStat=0; /* Number of Mutations */
int GenerationNumber; /* Keeps track of the generation */
FILE »graph; /* Keeps the statistics */
PopType BestEver; /* Stores the Best ever Chromosome */
FILE *Data; /* Data file for the neural network training
example*/
int NumExamples; /* Number of examples in the file */
int Numlnputs; /* Number of input units in neurlal network*/
int NumOutputs; /* Number of output units in neurlal network*/
int NumHidden; /* Number of bidden units in neurlal network*/
float InputPattern[2J[4]; /* Stores training pattern */
float Target[4]; /* Stores target pattern */

void mainO
{

hit i; /* Counters */
PopType *Populationl; /* Contains current population of genes */

PopType *Population2; /* Contains next population of genes */
int MaxGenerations; /* Maximum number of genertions */

/* Prompt and Read number of parameters and the size of the population */

printf("Enter the population size\n");
scanfr%d",&PopulationSize);
printf("Enter the number of parameters in each ChromosomeW);
scanfr%d",&NumberOfParameters);

/* allocate space for the members of the population */

Population 1 = (PopType *) malloc(PopulationSize*sizeof(PopType));
Population = (PopType *) malloc(PopulationSize*sizeof(PopType));

/* allocate space for each chromozome */

for(i=0;i<PopulationSize;i-H-) {

Populationl[i].chromosome = (GeneType *) malloc(NumberOfParameters *
sizeof(GeneType));

Population2[i].chromosome = (GeneType *) malloc(NumberOfParameters *
sizeof(GeneType));

}

28

BestEver.chromosome = (GeneType *) malloc(NumberOfParameters * sizeof(GeneType));
BestEver.fitness = (float)(-MAXINT);

InitiaIize(Populationl);
printffEnter Cross Over Probability (a number between 0-l)\n");
scanfC'yof'.&CrossOverProbability);
printfCEnter Mutation Probability (a number between 0-l)\n");
scanfT%f\&MutateProbability);
printf("Enter number of generations\n");
scanf("%d",&MaxGenerations);

/* Open the output file */

iff (graph = fopen("output","w+")) = NULL){
printf("Unable to open output file\n");
exit(0);

}

InitializeDataO; /*Read Training Examples for the Neural Net */

foKGenerationNumber^;GenerationNumber<MaxGenerations;GenerationNumber-H-){
CalculateFitness(Population 1);
SRSelect(Population 1 ,Population2);
CrossOver(Population2,Population 1);
Mutate(Population 1);
Statistics(Population 1 ,&BestEver);

}
PrintReport(Population 1);
free(Population 1);
free(Population2);
fclose(graph);

void Initialize(PopType *Population)

{
intij;

15.12);

printf("Enter any integer for a seed\n");
scanf(,,%d,,,&seed);
srand(seed);

for(i=0;i<PopulationSize;i-H-) {
forO^j^umberOfParametersJ-H-)

Population[i].chromosome[j] = (GeneType)(((randO%100)/3.3)

29

void CalculateFitness(PopType 'Population)
{

int i;

for(i=0;i<PopulationSize;i++) {
Population[i].fitness = ObjectiveFunction(Population[i] .chromosome);

}

void Statistics(PopType 'Population, PopType *BestEver)
{

int i;
float Best;
float Worst;
float Average;

Best = (float) (-MAXINT);
Worst = (float) (MAXINT);

Average = (float) 0;

for(i=0;i<PopulationSize;i-H-){
Population[i] .fitness = ObjectiveFunction(Population[i] .chromosome);
if(Population[i].fitness > BestEver->fitness)

CopyChromosome(Population[i],BestEver); */
if(Population[i] .fitness > Best)

Best = Population[i].fitness;
if(Population[i].fitness < Worst)

Worst = Populationfi] .fitness;
Average += Population[i] .fitness;

}
Average = Average/PopulationSize;
fprintf(graph,,,%d %f %f\n",GenerationNumber,Best,Worst);

/* Prints report */

void PrintReport(PopType 'Population)
{

int i j;

for(i=0;i<PopulationSize;i++){

30

printf("\nChromosome Fitness %f\n",Population[i].fitness);
for(j=0j<NumberOfParametersj-H-)

printf("Population[%2d].chromosome[%2d]
%f\n",ij,Population[i].chromosomejj]);

printfCW);
}
printf^'Total number of Crossovers %d\n",CrossOverStat);
printf("Total number of Mutations %d\n",MutationStat);
printfC'Best Ever fitness is %f\n",BestEver.fitness);
printüf'Best Ever Chromosome is: \n");

I* forü=0ü<NumberOfParametersJ-H-)
printf("Population[%2d].chromosome[%2d]

%f\n,,,ij,Population[i].chromosome|j]);
*/

TestFunction(BestEver.chromosome);

}

void PrintChromosome(GeneType *chromosome)
{

intj;
for(j=0j<NumberOfParametersj-H-)

printf("chromosome[%2d] = %f\n"j,chromosome|J]);
}

/* InitializeData function written by user to read appropriate Global Data */

void InitializeDataO
{

intij;

if((Data = fopenfinput.dat'V'r")) = NULL){
printfC'Error opening file inputxn");
exit(-l);

}

fscanfiT>ata,"%d %d %d",&NumInputs,&NumHidden,&NumOu^)uts);

fecanf(Data,"%d",&NumExamples);

for(i=0;i<NumExamples;i-H-) {
for(j=0 J<NumInputs j++) {

fscanf(Data,"0/od",&InputPattern[j][i]);
}
fscanf(Data,,,%d",&Target[i]);

}

31

fclose(Data);

}

/* Objective function typically written by the user */

float ObjectiveFunction(GeneType *chromosome)
{

int Lj,k,l;
float net;
float out;
float hout[2];
float fitness; /* fitness of the chromosome */

fitness = (fioat)0.0;

/* for (i=0;i<NumberOfParameters;i-H-)
fitness += chromosomefi];*/

for(i=0;i<NumExamples;i-H-) {
k=0;
forO=0;KNumHidden;l-H-) {

net = (float)0.0;
for(j=0 J<NumInputs J++) {

net += InputPattern[i][j]*chromosome[k];
k++;

}
net = net-chromosome[k];
k++;
hout[l] = (float)net/(l+fabs(net));

}
for(l=0;KNumHidden;l-H-) {

out += hout[l]*chromosome[k];
k++;

}
out = out - chromosome[k];
k++;
out = (float)out/(H-fabs(out));
if(fabs(out-Target[i]) < 0.5){

fitness+= (float) 1.0;
}

}
return(fitness);

32

void TestFunction(GeneType »chromosome)

{

int ij,k,l;
float net;
float out;
float hout[2];

for(i=0;i<NumExamples;i++) {
k=0;
for(l=0;l<NumHidden;l-H-){

net = (float)0.0;
for(j=Oj<NuinInputsJ-H-){

net += InputPattern[i][j]*chromosome[k];
k++;

}
net = net-chromosome[k];
k++;
houtfl] = (float)net/(l+febs(net));

}
for(l=0;l<NumHidden;H-i-){

out += houtp]*chromosome[k];
k++;

}
out = out - chromosomefk];
k++;
out = (float)out/(l+fiibs(out));
printf(ttoutput for pattern %d is %f\n",i,out);

}

}

I* CrossOverChromosome, is a disruptive operator will take two
induviduals in the population and produce two children */

void CrossOverChromosome(GeneType *parentl,GeneType *parent2,GeneType
•childl.GeneType *child2)

{

int CrossOverPoint; /* Randomly Chosen Cross Over Point */
int i; I* Counters */

33

void TestFunction(GeneType "chromosome)
{

int i j,k,l;
float net;
float out;
float hout[2];

for(i=0;i<NumExamples;i++) {
k=0;
for(l=0;KNumHidden;l++) {

net = (float)O.O;
for(j=0 J<NumInputs J++) {

net += InputPattern[i][jJ,chromosome[k];
k-H-;

}
net = net-chromosome[k];
k++;
hout[l] = (float)net/(l+fabs(net));

}
for(l=0;l<NurnHidden;l++){

out += hout[l]*chromosome[k];
k++;

}
out = out - chromosome[k];
k++;

out = (float)out/(1 +fabs(out));
printf("output for pattern %d is %f\n",i,out);

}

}

I* CrossOverChromosome, is a disruptive operator will take two
induviduals in the population and produce two children */

void CrossOverChromosome(GeneType 'parent l.GeneType *parent2,GeneType
♦childl.GeneType »child2)
{

int CrossOverPoint; f* Randomly Chosen Cross Over Point */
int i; /* Counters */

34

/* pick a random point from 0 to Number of parameter */

srand(seed);

seed = randO;

CrossOverPoint = (int) (rand() % NumberOfParameters);
/* Cut and Splice */

forO=0;i<CrossOverPoint;i-H-) {
cbildl[i] = parentl[i];
child2[i] = parent2[i];

}

for(i=CrossOverPoint;i<NumberO£Parameters;i-H-){
childl[i] = parent2[i];
child2[i] = parent l[ij;

}

/* CopyChromosome copies a given chromosome to another */

void CopyChromosome(GeneType *01dCopy, GeneType *NewCopy)

{
int i;

for(i=0;i<NumberOfParameters;i-H-) {
NewCopy[i] = 01dCopy[i];

}

/* CrossOver will cross over different chromosomes selected with a
probablity defined by the cross over probability */

void CrossOver(PopType »Selected, PopType *New)

{

int i;
float probability;
int randomChromosome;

srand(seed);
seed = randO;

35

/* if the coin flip generates a number less than or equal to that of the
cross over probability initiate crossover, else copy the induviduals
into the new population */

for(i=0;i<PopulationSize;i=i+2) {
probability = ((float)(rand()% 1000))/1000;
if(probability <= CrossOverProbability){

CrossOverStat-H-;

CrossOverChromosome(Selected[i]xhromosome,Selected[i+l].chromosorne,New[i].chromoso
me,New[i+1] .chromosome);

}
else{

CopyChromosome(Selected[i] .chromosome,New[i] .chromosome);
CopyChromosome(Selected[i+1] .chromosome,New[i+1]. chromosome);

}
}/*endfor*/

/* if the population size is not even pass a random chromosome to the
new population */

if (PopulationSize%2 != 0){
randomChromosome = randO%PopulationSize;

CopyChromosome(Selected[randomChromosome].chromosome,New[randomChromosome].c
hromosome);

}

CalculateFitness(New);

}

/* if the coin flip yeilds a probabUity less than or equal to the
Mutation ProbabUity mutate gene */

void MutateChromosome(GeneType *gene)
{

inti;
float probabUity;
float mutateAmount;
int power;

srand(seed);
seed = randO;
for(i=0;i<NumberO£Parameters;i++) {

probability = ((float)(rand0%1000))/1000;
if(probabüity < MutateProbabUity){

MutationStat++;

/* Generates a random mutation amount in the user defined range
and either adds or subracts the generated noise to the original
value */

mutateAmount = range*((float)(randO% 1000))/1000;

power = rand0%2;
mutateAmount = (float)pow((double)-l,(double)power)*mutateAmount;
gene[i] = gene[i]-KGeneType)(mutateAmount);

}
}/* end for */

}

/* Mutate Calls Mutate Chromosome */

void Mutate(PopType »Population)

{

inti;

for(i=0;i<PopulationSize;i-H-){
MutateChromosome(Population[i].chromosome);

}

CalculateFitness(Population);

}

/* SRSelect selets in one shot all the orgainsms for new population
Assumes that CalculateFitness has already been called */

void SRSelect(PopType *01d, PopType *New)

{

intij;
float *slice; /* keeps the % slice of the fitness for each organism */
float TotalFitness=0; /* total fitness of the population */

float WheelStop; /* Keeps the random point where the Roulette Wheel stops */
float delta; /* amount by which the spoke in the wheel is displaced */
int picked; /* flag */
FILE *fp; /* Temp file variable */

if((fp = fopen(,,stat.dat,,,"w+")) eq NULL){
printf(HError: Cannot open file stat.datW);
exit(0);

}

37

/* Generates a random mutation amount in the user defined range
and either adds or subracts the generated noise to the original
value */

mutateAmount = range*((float)(rand0%1000))/1000;
power = rand()%2;
mutateAmount = (float)pow((double)-l,(double)power)*mutateAmount;
gene[i] = gene[i]+(GeneType)(mutateAmount);

}
}/♦ end for •/

}

/* Mutate Calls Mutate Chromosome */

void Mutate(PopType *Population)
{

inti;

foKi^^PopulationSizeii-H-) {
MutateChromosome(Population[i].chromosome);

}

CalculateFitness(Population),
}

/* SRSelect selets in one shot all the orgainsms for new population
Assumes that CalculateFitness has already been called */

void SRSelect(PopType »Old, PopType *New)
{

int ij;
float *slioe; /* keeps the % slice of the fitness fo- each organism */
float TotalFitness=0; /* total fitness of the population */

float WheelStop, /* Keeps the random point where the Roulette Wheel stops */
float delta, /* amount by which the spoke in the wheel is displaced */
int picked; /* flag */
FILE *fp; /* Temp file variable •/

if((fp = fopen("stat.dat"."w+")) eq NULL){
printf("Error: Cannot open file stat.dat\n"),
exit(O);

}

3ft

APPENDIX C
OBJECTIVE FUNCTION FOR AUTOMATICALLY TUNING THE

FUZZY CONTROLLER

/• */
f */
/* The routines below generate the control output and compare */
/* the root mean square error of the output produced by the GA */
/* and the actual outputs. This gives a measure of the quality */
/* of the fuzzy membership function generated by the GA */
I* Sam Collins, Dept. of Computer Science, CAU */
I* •/

«include <math.h>
«include <stdlib.h>
«include <string.h>
«include <ctype.h>
«include "external.h"

double evallriMufleft, center, right, inputValue)
/* this function returns the truth value associated with the triangle */
double left;
double center,
double right;
double inputValue;

{
double slope;
double ylnt;
if((inputValue > left)&&(inputValue <= center))

{
slope = 1.0/(center - left);
ylnt = -slope * left;

}else{
slope = 1.0/(center-right);
ylnt = -slope • right;

}
retum(slope*inputValue + ylnt);

}

void evalInMemMu(member, inputValue)
/* This function is used to evaluate the truth value of a member. */
struct memberObject "member,
double inputValue;

{
switch(member->type)

{
case TRIANGULAR;

if(input Value == membeN>centerVertex)

{
member->mu = 1.0;

} else if((inputValue > member->leftVertex)&&
(inputValue < member->rightVertex))

{
member->mu = evalTriMu(member->left Vertex,

39

member->centerVertex,
member->rightVertex,
inputValue);

}else{
member->mu = 0.0;

}
break;

case S_FUNCTION:
iff inputValue >= member->centerVertex)

{
member->mu =1.0;

}else if((input Value > member->leftVertex)&&
(inputValue < member->centerVertex)){
member->mu = evalTriMu(member->leftVertex,

member->centerVertex,
member->centerVertex,
inputValue);

}else{
member->mu = 0.0;

}
break;

case Z_FUNCT10N:
if(inputValue <^ member->centerVertex)
{

member->mu ". .0;
}else if((input Value > member->centerVertex)&&

(inputValue < member->right Vertex)) {
member->mu = evalTriMu(member->centerVertex,

member->centerVertex,
member->rightVertex,
inputValue);

}else{
member->mu = 0.0;

}
break,

default:
fprmtff stderr,"\nevalInMemMu: Error in the case");
exit(l);

}

void evalMuOflhVa^C, Sample)
/* this function is used to evaluate input variables mu */
struct controller *C;
int Sample;

{
int ij;
for(i=0; i < C^numOflnputVar, i++)

{
for(j=0; j < C->inputVars[i].numOfMembers; j++)
{

evalInMemMu(&(C->inputVars[i].member[j]),
InputData[Sample][i]);

}
}

}

void ZeroMuOfOutVar(C)
I* this function is used to zero output variables mu */

40

struct controller *C;
{

intij;
for(i=0; i < C->numOiDutputVar, i++)
{

for(j=0; j < C->outputVars[i].numOfMembers; j++)
{

C->outputVars[i].member[j].mu=0.0;
}

}
}

double minDouble(valuel, value2)
double valuel;
double value2;
{

if(valuel < value2)
return(valuel);

else
retum(value2);

}

double maxDouble(valuel, value2)
double valuel;
doubk value2;
{

if(valuel > value2)
return(valuel);

else
retum(value2);

}

double applyRule(C,R, ruleP, rule Value)
/* this function is used to apply a rule if it fires */
struct controller *C;
struct ruleObject *R;
struct ruleComp "ruleP;
double rule Value;
{

double truth Value;
double truthForOr,
truth Value = rule Value;
while((*ruleP>>type != THEN)
{
switch((*ruleP>->type)
{
case AND:

truth Value = minDouble(truth Value,
C^rnputVars[(*ruleP>^varIndex].member[(*ruleP)c»merritodex].mu);
•ruleP = (*ruleP)->next;
break;

case OR:
truthForOr =
C^inputVare[(*nüeP)c>varIndex].member[(,raleP)^>memIndex].mu;
•ruleP = (»ruleP>>next;

truth Value = maxDouble(truthValue, applyRule(C .R, ruleP, truthForOr));
/* recursive function call should point to THEN when returns*/
ifl[(*ruleP>>type != THEN){

41

fprintf(stderr, "\napplyRule: Eiror in recursive call!");
exit(-l);

}
break;

default:
fprintf(stderr,"\riapplyRule: Error in case");
exit(l);

}
}
return(truth Value);

}
void evalMuOröutVar(C ,R)
/* This function is utilizes the rules from the ruleBase to determine the */
/* mu of the output variables */
struct controller *C;
struct ruleObject *R;

{
int numOfRules;
double ruleValue;
struct ruleComp 'ruleP,
for(numOfRules=0; numO£Rules<R->numOfRules; -HnumOfRules)

{
ruleP = &(R^>rule[numOfRules]);
ruleValue =

C->inputVars[ruleP->varIhdex].member[nilePo»manIhdex].mu;
ruleP = ruleP->next;
ruleValue = applyRule(C, R, &(raleP), ruleValue);
/* ruleP should be pointing to the THEN1 component */
if(ruleP->type != THEN)
{

fprint^stderr, "\nevalMuOfDutVar: Error should be THEN!");
exit(-l);

}
C->outputVars[ruleP->varIndex].member[ruleP->memIndex].mu =

maxDouble(ruleValue,
C->outputVars[ruleP->varIndex].member[ruleP->memIndex].mu);

}

void calcMemAreaCent(member, lower, upper, Area, Centroid)
struct memberObject *member,
double lower,
double upper,
double •Area;
double 'Centroid;
{

double AreaOne;
double AreaTwo;
double CentroidOne;
double CentroidTwo;
switch(member->type)
{
case TRIANGULAR:

•Area = 0.5 * (member->rightVertex - member->leftVertex) *
(member->mu);

CentroidTwo =((member->rightVertex - member->leftVertex) +
(member->rightVertex - member-XÄnterVertex^S.O;

•Centroid = member->rightVertex - CentroidTwo;
break;

case S FUNCTION:

42

AreaOne = 0.5 * (member->centerVertex - member->leftVertex) *
(member->mu);

AreaTwo = (upper - member->centerVertex) * (member->mu);
•Area = AreaOne + AreaTwo;
CentroidOne = member->centerVertex -

((membeN>centerVertex - member->leftVertex)/3.0);
CentroidTwo = upper - (upper - mernber->centerVertex)/2.0;
if(*Area > 0.0)
{

♦Centroid = ((AreaOne * CentroidOne) +
(AreaTwo * CentroidTwo))/(»Area);

}else{
•Centroid = 0.0;

}
break;

case Z_FUNCTION:
AreaOne = (member->centerVertex - lower) * (member->mu);
AreaTwo = 0.5 * (member->rightVertex - member->centerVertex) *

(member->mu);
♦Area = AreaOne + AreaTwo;
CentroidTwo = member->centerVertex +

((member->rightVertex - member->centerVertexy3.0);
CentroidOne = lower + (member->centerVertex - lower)/2.0;
if(»Area>0.0)
{

»Centroid = ((AreaOne * CentroidOne) +
(AreaTwo * CentroidTwo))/(»Area);

}else{
♦Centroid = 0.0;

}
break;

default:
fprintf(stderr,"\ncalcMemAreaCent: Error in the case.Nn");
exit(l);

}
}

double CalcOutCentroid(Var)
/* this function calculates the overall centroid of a variable */
struct varObject *Var,
{

inti;
double Area, Centroid, TotalArea, TotalCentArea;
Area = 0.0;
Centroid = 0.0;
TotalArea = 0.0;
TotalCentArea = 0.0;
for(i=0; i < Var->numOfMembers; i++)

{
calcMemAreaCent(&(Var->meniber[i]), Var->lowerBound,

Var->upperBound, &Area, &Centroid);
TotalArea = TotalArea + Area;
TotalCentArea = TotalCentArea + (Area * Centroid);

}

if(TotalArea > 0.0)

{
retum(TotalCentArea/TotalArea);

}else{
return(0.0);

43

}.

void getCalcOut(C, Samp)
/* this function is used to evaluate the calculatef Out put for a sample */
struct controller *C;
int Samp;
{

int i;
for(i=0; i < C->numOfOutputVar, i++)
{

CalculatedOutput{Samp][i] = CalcOutCentroid(&(C->outputVars[i]));
}

}

double ZeroCalcOut(numOutVar)
int numOutVar,

{
int numOfSamp^umOfOutputs;
fc<numOfSamp=<); numOfSamp<NumberOfSamples; ++numOfSamp)
{

for(numOfDutputs=0; numOfDutputs<numOutVar, -H-numOfOutputs)
{

CalculatedOu^)ut[niiTr>rifSamp][numOfOutputs]=0.0;

}

void calcOutputs(C>R)
/* this function is used to evaluate the fitness of the controller */
struct controller *C;
struct raleObject *R;
{

int Samp;
ZeroCalcOi;t(C->numOfDutputVar);
for(Samp=0; Samp < NumberOfSamples; Samp++)
{

evalMuOflnVa^C, Samp);
ZeroMuOfOutVar(C);
evalMuOfDutVar(cii);
getCalcOut(C, Samp);

}
}

double ControUerFimess(numOutVar)
/* This function is used to calculate the square of the differance of */
/• output data and the calculated output. Then compute the fitness. */
int numOutVar,
{

int numOfSamp,numOfOutputs;
intij;
double sum=0.0;
double mse;
for(numOfSamp=0; numOfSamp<NumberOfSamples; ++numOfSamp)
{

for(numOfOutputs=0; numOfOutputs<numOutVar, ++numOfOutputs)
{

sum +=((CalculatedOutput[numOfSamp][numOfOutputs]-
OutputData{numOfSamp]tnumOfDutputs])*

44

(CalculatedOutput[numOfSamp) [numOfOutputs]-
OurputData[numOfSamp][numOfOutputs]));

}

}
mse = sqrt(sum/((double)NumberOfSamp!cs)),
retura(I.0/(1.0+mse));

>

void getData(numInVar, numOutVar)
/* This function is used to get the data from the Datal'ile. The data will be V
/* used to calculate the fitness of the indvidual. */
int nunünVar,
int numOutVar,

{
FILE *fpGctData;
int numOfSamp^umOfkputs^umOföutputs;
inti,j;
if(numfiles = 0)

fprintftoutfp," Enter the name of the datafile. > "),
fscan(Iuiip,"%s",DataFile),
if((fpGetData=fopen(DataFile,"r")) == NULL)

{
fprintfl;outfp,"Could not open %s\n".DataFile);
exit(-l);

}
fscanf(fpGetData,"0/od'',&NurnberOfSaniplesV
/* allocate space for two dimensional array InputData •/
ifUInputData = (double '^malloc

(NumberOfSamples'sizeottdouble *))) = NULL)

{
fprintf(stderr,"\riNot enough memory for InputData.\n");
exit(-l);

}
for(i = 0; i < NumberOfSamples; i++)
{
if{(InpulData[i] = (double *)

malloc{numlnVar*sizeotI,double))) == NULL)

{
fprintf(stderr,"\nNot enough memory for InputData.\n");
exit(-l);

}
}

/* allocate space for two dimensional array OutputData */
llUOutputData = (double **)

malloc(,NumberOfSamples*sizeof(double *))) = NULL)
{

fprint^stderr.'NnNot enough memory for OutputData.\n");
exit(-l);

}
forfj = 0, j < NumberOfSamples; j++)
{
iIt(Outputi^ataU] = (double •)

malloc(numOutVar*sizeot{double))) = NULL)
{

fprintii;stderr>"\nNot enough memory for lnputData.\n");
exit(-1);

}
}

/* allocate space for two dimensional array Uutputüaia */

45

, (CalciüatedOutput[numOfSamp][numOfOutputs]-
OutputData[numOfSamp][numOföutputs)));

}
}

rase = sqrt(sum/((double)NumberOfSamples));
return(1.0/(l.<Hmse));

}

void getData(numInVar, numOutVar)
/* This function is used to get the data from the DataFile. The data will be */
/* used to calculate the fitness of the indvidual. */
int nunünVar,
int numOutVar,
{

FILE »fpGetData;
int numOfSamp^iumOflnputs^mmOfOutputs;
intij;
ifjnumfiles ^ 0)

fprintf(outfp," Enter the name of the datafile. > ");
fscanf(infi),"%s"J)ataFile);
if((fpGetData=fopen(DataFile,"r")) = NULL)
{

fprintf(outfp,"Could not open %s\n"JDataFile);
exit(-l);

}
fscanf(fpGetData,"%d",&NumberOfSamples)-
/* allocate space for two dimensional array InputData */
if((InputData = (double **)malloc

(NumberOfSamples*si2eof(double *))) = NULL)
{

fprintf(stderT,"\nNot enough memory for InputData.to");
exit(-l);

}
for(i = 0; i < NumberOfSamples; i++)
{
if((InputData[i] = (double *)

malloc(numInVar*sizeof(double))) = NULL)
{

fprintf(stderr,"\nNot enough memory for InputData.\n");
exit(-l);

}
}

/* allocate space for two dimensional array OutputData */
if((OutputData = (double **)

malloc(NumberOfSamples*sizeof(double *))) = NULL)
{

fprintf(stderr)"\nNot enough memory for OutputData.W);
exit(-l);

}
for(j = 0; j < NumberOfSamples; j++)
{
if((OutputData[j] = (double *)

malloc(numOutVar*sizeof(double))) = NULL)
{

fprintf(stderr,',\riNot enough memory for lnputData.\n");
exit(-l);

}
}

/* allocate space for two dimensional array OutputData */

46

if((CalculatedOutput = (double **)
malloc(NumberOfSamples*sizeof(double *))) = NULL)

fprintf(stderr,"\nNot enough memory for CalculatedOutput.\n");

exit(-l);

}
for(j = 0; j < NumberOfSamples; j++)

if((CalculatedOutputO] = (double *)
malloc(numOutVar*sizeof(double))) = NULL)

rprintfl>tderr,"\nNot enough memory for CalculatedOutput.W);
exit(-l);

}

for(numOfSamp=0; numOfSamp<NumberOiSamples; -HnumOfSamp)

for(numOiInputs=0; numO£Inputs<numInVar, ++numOflnputs)

fscanf(fpGetData,"%ir,&mputData[numOiSamp][numOimputs^

for(numOfOutputs=0; numOfOutputs<numOutVar, ++numOfOutputs)

fscanf];fpGetI^ta/%ir,&OutputData[numOiSamp][numOfDutputs]);

}
}

fclose(fpGetData);/*Close the flle */
}/* End of function getData. */

void printData(numInVar, numOutVar)
/* This function is used to print the data from the DataFile. */
int numlnVar,
int numOutVar,

int numOfSamp^iumOflnputsjiumOiDutputs;

inti.j;
for(numOiSamp=0; numOfSamp<NumberOiSamples; -H-numOfSamp)

{
fprmtf(outrp,"\n");
for(numOfInputs=0; numOflnputs<numinVar, -H-numOflnputs)

{
fprintf(outfp,"inVar[%2d][%d] =%7.31f ", numOfSamp+1

, numOönputs+1, InputData[numOfSamp][numOiInputs]);

}
fprintf(outrp,"\t");
for(numOfDutputs=0; numOiDutputs<numOutVar, ++numOfDutputs)

fprmtf{outrp>utVar[%2d][%d] = %6.31f \ numOfSamp+1,
numOfOutputs+1, OutputData[numOfSamp][numOfOutputs]);

}

}

int getInVarIndex(C, name, num)
struct controller *C;
char 'name;
int num;

{
int i;

47

}

for(i=0; i < C->numOflnputVar, i++)
{

if(!strcmp(name, C->inputVars[i].varName))
return(i);

}
fprintf^stderr, "\ngetInVarIndex: Error in nile[%dj! ",num);
fprintitstderr, "Variable Vos' does not exist!\n\n", name);
exit(-l);

int getInMemIndex(C, name, num, varlndex)
struct controller *C;
char *name;
int num;
int varlndex;

{
int i;
for(i=0; i < C->inputVars[varIndex].numOflvlembers; i++)
{

if(!strcmp(name, C->inputVars[varIndex].member[i].memName))
return(i);

}
fprintf(stderr, "\ngetInMemIndex: Error in rule[%d]! ",num);
fprintf(stderr, "Member "%s' does not exist!\n\n\ name);
exit(-l);

}

int getOutVarIndex(C, name, num)
struct controller *C;
char *name;
int num;
{

int i;
for(i=0; i < C->numOfDutputVar, i++)
{

if(!strcmp(name, C->outputVars[i].varName))
return(i);

}
rprintf(stderr, "\ngetOutVarIndex: Error in rule[%d]! ",num);
rprintf(stderr, "Variable "%s' does not exist!\n\n\ name);
exit(-l);

}

int getOutMemIndex(C, name, num, varlndex)
struct controller *C;
char *name;
int num;
int varlndex;
{

int i;
for(i=0; i < C^>outputVars[varIndex].numOiMembers; i++)
{

if(!strcmp(name, C->outputVars[varIndex].member[i].memName))
return(i);

}
fprintf(stderr, "\ngetOutMemIndex: Error in rule[%d]! "jaum);
fprintf(stderr, "Member "%s' does not exist!\n\n\ name);
exit(-l);

}

48

int buüdRdeBase(C,rdeP,fpGR,nurn>symbol)
struct controller *C;
struct ruleComp *ruleP;
FHE**fpGR;
int num;
char 'symbol;

{
char symbolIS[MAX];
if(!strcmp(syinbol, "IF"))

{
ruleP->type = F;
fscanf(*rpGR,"%s", ruleP->varName);
ruleP->varIndex = getInVarIndex(C, ruleP->varName, num);
fscanf(*rpGR,"%s", symbolIS);
if(strcmp(symbolIS, "IS"))

{
rprintf(stderr, "\nbuildRuleBase: Error in rule %d",num);

fprinrl(stderr,". Expecting IS!\n");
exit(-l);

}
fecanf(*fpGR)"%s", ruleP->memName);
nüeP>>memIndex=getInMemIndex(C, ruleP->memName,

num, ruleP->varIndex);
retum(l);

}else if(!strcmp(symbol, "AND")){
ruleP->t>pe = AND;
fscanf(*fpGR,"%s", ruleP->varName);
ruleP->varlhdex = getInVarIndex(C, ruleP->varName, num);
fscanf(*fpGR,"%s", symbolIS);
if[strcmp(symbolIS, "IS"))

{
fprintfl;stderr, "\nbuildRuleBase: Error in rule %d",num);

rprintfCstderr,". Expecting IS!\n");
exit(-l);

}
fsamf(*fpGR1"%s") nüeP->memName);
ruleP->memIndex=getInMemIndex(C, ruleP^>memName,

num, ruleP->varIndex);
return(l);

}else i^lstrcnnXsymbol, "OR")){
ruleP->type = OR;
fscaniT*fpGR,"%s", ruleP->varName);
ruleP->varIndex = getInVarIndex(C, ruleP->varName, num);
fscanfi:*rpGR,"%s", symbolIS);
if(strcmp(symbolIS, "IS"))

{
fprintf(stderr, "\nbuildRuleBase: Error in rule %d",num);

rprintf(stderr,". Expecting IS!\n");
exit(-l);

}
fscanfl;*fpGR,"%s", ruleP->memName);
ruleP^memIndex==getInMemIndex(C, ruleP->memName,

num, ruleP->varIndex);
retum(l);

}else if(!strcmp(symbol, "THEN")){
ruleP->type = ,raEN;
fscanf(*fpGR)"%s", ruleP->varName);
ruleP->varIndex = getOutVarIndex(C, ruleP->varName, num);
fscanf(*rpGR,"%s", symbolIS);

49

}

if(strcmp(symbolIS, "IS"))
{

fprintf(stderr, "\nbuildRuleBase: Error in rule %d",num);
fprintf(stderr,". Expecting IS!\n");
exiK-1);

}
fscanf(*fpGR,"%s", ruleP^>memName);
ruleP->memIndex = getOutMemIndex(C, ruleP->memName,

num, ruleP->varIndex);
retum(0);

}else{
fprint^stderr, "\nbuildRuleBase: Error in rule %d file.", num);

fprintf(stderr, "Check format!");
exit(-l);

}

struct ruleComp *allocateComp()
{

struct ruleComp *RC;
if((RC = (struct ruleComp •)

malloc(sizeof(struct ruleComp)))=NULL)
{

fprintf(stderr>"\nallocateComp: not enough memory for rules.\n");
exit(-l);

}
return(RC);

}

getRules(C,R)
/* This function is used to get the rule from RuleFile. */
struct controller *C;
struct ruleObject *R;
{

FILE »fbGetRules,
int numOfRules;
char symbolfMAX];
int endFlag;
int newNode;
struct ruleComp *P;
if(numfiles = 0) {
fprintffautfp," Enter the name of the rule file.");

fprintf(outfp," >");
}
fscanf(infp,"%s")RuleFile);
ifttfpGetRules^open^uleFile.V)) = NULL)
{

fprintf(stderr,"Could not open %s\n",RuleFile);
exit(-l);

}
fscanf(fpGetRules,"%d",&(R->numOfRules));
if((R->rule = (struct ruleComp *)

malloc((R->numOfRules)*si2eof(struct ruleComp)))=NULL)
{

fprintf(stderr,"\ngetRules: not enough memory for rules.W);
exit(-l);

}
for(numOfRules=0; numOfRules<R->numOfRules; ++numOfRules)

{
endFlag = 0;

50

newNode = 0;
P = &(R->rule[numO£Rules]);
while(!feof(fpGetRules) && lendFlag)

{
fscanflfpGetRules,"%s", symbol);
if(!strcmp(symbol, "EM)"))

{
endFlag = 1;

}else{
newNode=bulcKuleBase(CJ?,&fptetRules,

numOfRules, symbol);
if(newNode)
{

P->next=allocateComp();
P=P->next;

}else{
P->next=NULL;

}
}

}
printf("\n");

}

fclose(fpGetRules);/*Close the file V
}/* End of function getRules. */

void printRules(R)
struct ruleObject *R;
{

struct ruleComp *P;
int numOfRules;
fprintf(stdout,"\n\n");
for(numOfRules=0; numOfRules<R->numOfRules; ++numOfRules)

{
P = &(R->nüe[numOfRules]);
fprmtf(stdout,"RULE[%d] = "^umOfRules);
while (P!=NULL)
{

switch(P->type)
{

case IF:
fprintfl;stdout,"IF");
break;

case AND:
fprintftstdout/AND");
break;

case OR:
fprintf(stdout,"OR");
break;

case THEN:
tprmtf(stdout,"THEN");
break,

default
fprintf(stderr,"\nprintRules:");

rbrintf(stderr,"In case.\n");
exit(-l);

}
fprintf(stdout,"%s IS %s", P->varName, P->memName);
P=P->next;

}

51

fprint^stdout/ENEAn");
}
fprintf{stdout,"\n\n");

}

void freeRules(R)
struct ruleObject *R;
{

struct raleComp *P;
struct raleComp *tmp;
int numOfRules;
for(numOfRules=0; numOfRules<R->numOfRules; ++numOfRules)

{
P = &(R->rule[numOfRules]);
while (P^>next!=NULL)
{

tap = P->next;
P->next=P->next->next;
free(tmp);

}
}
free(R->rule);

void evalMembers(memberOne, memberTwo)
/* This function is used to evaluate the validity of two member functions */
struct memberObject *memberOne;
struct memberObject 'memberTwo;
{
switch(memberOne->type)
{

case TRIANGULAR:
switch(memberTwo->type)
{

case TRIANGULAR:
break;

case S_FUNCTION:
fprintf(stderr,"\nevalMembers: Error invalid");
fprintf^stderr.'combination of member functions!");
fprintf(stderr,"\n\n\tS_FUNCTION... TRIANGULAR \n");
exit(l);
break;

case Z_FUNCTION:
break,

default:
fprmtff stderr,"\nevalMembers: Error in inner case");

exit(lX
}
break;

case S_FUNCTION:
switch(memberTwo->tvDe)
{

case TRIANGULAR:
break;

case S_FUNCTION:
fprintf(stderr,"\nevalMembers: Error invabd ");
fprintf(stden',"combination of member functions!");
tprintf|:stderr,"\n\n\tS_FUNCTION... S_FUNCTION\n");

52

exit(l);
break;

case Z_FUNCnON:
break;

default:
fprmtf(stderr,"\nevalMembers: Error in inner case");

exit(]);

}
break;

case Z_FUNCnON:
switch(memberTwo->type)

{
case TRIANGULAR:

rprintfl;stderr,"\neva]Members: Error invalid");
fprmtf{stderr,"combination of member functions!");
fprint^stderr/VntoUTRIANGULAR... Z_FUNCTION\n");
exit(l);
break;

case S_FUNCTION:
fbrintf(stderr,"\nevalMembers: Error invalid");
fprintf(stderr, "combination of member functions!");
fprintf(stderr,"\n\n\tS_FUNCTION... Z_FUNCHON\n");
exit(l);
break;

case Z_FUNCTION:
fprintf(stderr>"\nevalMembers. Error invalid ");
fprintH^stderr/combination of member functions!");
fprintitstderr/NnWNtZ.FUNCTION... Z_FUNCTION\n");
exit(l);
break;

default:
fprintfl[stderr>"\nevalMembers: Error in inner case");

exit(l);

}
break;

default
fprintf(stderr,"\nevalMembers: Error in outer case");

exit(l);

}
}

void checkMem(TheVar)
/* This function will be used to determine the number the o'.' criteria used */
/* to calculate the fitness */
struct varObject 'TheVar,

{
intjjc;
for(j=0; j < TheVar-^numOfMembers; j++)

{
for(k=j-l; k>=0; k-)

{
evalMembers(TheVar->member[j],

TheVar-omemberfk]);

}
}

}

int getType(nameM)
char *nameM;

{

53

int choice; /* varible that holds the */
/* choice of the user. */

/*
*
*/

/*
*
*
*/

This part of the program will print the list of choices for the user.

if(numfiles = 0){
/*rprintf(outfp,"\n");*/
fprintf(outfp,"\tMember function "%s' is of what type:\n\n",

nameM);
fprintf(outfp,"\t\tl. Triangular.^");
tprintf(outfp,"\t\t2. S-Function.\n");
fprintftoutfp/WÜ. Z-Function.\n");
fprintf(outfp>"\n");
fprintf(outfp,"\tEnter your choice:");

}
fscanf(infp,"%d",&choice);

if(numfiles = 0)
fprintf(outfp,"\n");

This part of the program will return the value for the function
that corresponds to the users choice.

if (choice = 1){
retumfTRIANGULAR); /* Triangular •/

} else if (choice = 2){
return(S_FUNCTION); /* S-Function */

}else if (choice = 3){
retum(Z_FUNCTION); /* Z-Function •/

}else {
fprinti(stderr,"\nIncorrect entry for type!");
exit(-l);

} }

void allocateInputVar(C)
/* This function is used to allocate space for the input variables */
struct controller *C;
{

int ij; /* for loop variables */
/* get the number of input variables */
if(numfiles = 0){
fprintf(outfp,"\n Enter number of input variables ");

fprintf(outfp," >");

}
fscanf(inrp,"0/od",&(C->numOiInputVar));
if((C->inputVars = (struct varObject *)

malloc((C->numOflnputVar)*sizeof(structvarObject)))=NULL)
{

rprintf(stderr)"not enough memory for %s.\n\"inputVars");
exit(-l);

}
for(i=0; i < C->numOflnputVar; i++)
{

if(numfiles = 0){
fprinti(outfp,"\n Enter name of input variable");

fprintf(outfp,"[%d]", i+1);
fprintf(outfp," >");

}
fscanl(infp,"%s",C->inputVars[i].varName);

54

iflnumfiles = 0){
fprintf(outfp)"\n Enter the lower bound ");
fprintf(outfp,"for the variable");
fprintfl;outfp,"yos' ->", C->inputVars[i].varNarae);

}
fscaiu^mfp/%lf,<^C->mputVare[i].lowerBound));

iflnumfiles = 0){
fprintf(outfp,"\n Enter the upper bound ");

fprint^outfp/for the variable");
fprintf(outfp,'"%s' ->", C->inputVars[i].varName);

}
fscanf(infp,"%ir,&(C->inputVars[i].upperBound));
if(C->inputVars[i].upperBound < C->inputVars[i].lowerBound)

{
fprintfj;stderr,"\n Upper bound is greater than ");
fprintf(stderr,"lower bound of variable");
fprint^stderr.'yos'.^'.C^inputVarstil.varName);
exit(-l);

}
C->inputVars[i].delta = C->inputVars[i].upperBound -

C->inputVars[i].lowerBound;
iffaumfiles = 0){

fprintfl;outfp,"\n Enter the number of bits");
fprinrf(outfp,"for the variable");
fp^intfl;outfp,",%s, ->", C->inputVars[i].varName);

}
fscaiif(infp/%d%<^C->mputVars[i].numBits));
iflnumfiles = 0){

fprintf(outfp,"\n Enter number of member functions ");
fprintf(outfp,"for variable");
fprintf(outfp>"'%s' ->", C->inputVars[i].varName);

}
fs<anf|;infp,"%d",&(C->üiputVars[i].numOfMembers));
/* allocate space for member functions for the variable */
if((C->inputVars[i].member = (struct memberObject *)

malloc((C->inputVars[i].numOfMembers) *
sizeof(struct memberObject)))=NULL)

{
fprintf^stderr/not enough memory for the ");
fprintf(stderr,"member functions of variable ");
fprintf(stdeTr>'"%s'.\n", C->iiiputVars[i].varName);
exit(-l);

}
if(numfiles = 0)
fprintfl;outfp,"\n");
/* get name and type for member functions */
for(j=0; j < C->inputVars[i].numOfMembers; j++)

{
iffaumfiles = 0){
fprintf(outfp,"\tEnter name of member");

fprintf(outfp/function %2d", j+1);
fprintffautfp," ->");

}
fsamf(infp,"%s",C->mputVars[i].member[j].memName);
C->inputVars[i].member[j].type =

getType(C->inputVars[i].member[j].memName);

}
/* check for invalid combination of member functions */
checkMem(C->mputVars[i]);

55

}

void freeInputVar(C)
/* This function is used to deallocate space for the input variables */
struct controller *C;
{

inti;
for(i=0; i < C->numOfInputVar, i++)
{

free(C->inputVars[i].member);
}
free(C->inputVars);

}

void allocateOutputVar(C)
/* This function is used to allocate space for the output variables */
struct controller *C;

{
int i j; /* for loop variables */
/* get the number of output variables */
iftnumfiles = 0){
fprintffoutfp,"\n Enter number of output variables ");

fprintffoutfp," >");
}
fscanf(infp,"%d",&(C->numOfOutputVar: I,
if((C->outputVars = (struct varObject *)

maUoc((C->numOfOutputVar)*sizeof(structvarObject)))=NULL)
{

fprintf(stderr,"not enough memory for %s.\n","outputVars");
exit(-l);

}
for(i=0; i < C->numOfDutputVar, i++)
{

iffaumfiles = 0){
fprintf(outfp>"\n Enter name of output variable");

fprintf(outfp,"[%d]", i+1);
fprint^outfp," > ");

}
fscanf(infp,"%s")C->outputVars[i].varName);
if(numfiles = 0){

fprintffoutfp,"\n Enter the lower bound ");
fprintf(outfp,"for the variable");
fprintftoutfp/yos' -> ", C->out-DutVars[i].varName);

}
fscaiu^p/%lf,^C->outputVars[i].lowerBound));
if(numfiles = 0){

fprintf(outfp,"\n Enter the upper bound ");
fprintf(outfp,"for the variable");
fprintf(outfp,",%s' ->", C->outputVars[i].varName);

}
fscaiu^infp>"%lf',&(C->outputVars[i].upperBound));
if(C->outputVarsti].upperBound < C->outputVars[i].lowerBound)
{

fprintffstderr,"\n Upper bound is greater than");
fprintf(stderr,"lower bound of variable");
fprintf(stderr,",%s'.\n", Co»outputVars[i].varName);
exit(-l);

}
C->outputVars[i].delta = C->outputVars[i].upperBound -

C->outputVars[i].lowerBound;

56

ifjnumfiles = 0){
fprintf(outfp,"\n Enter the number of bits");
Q)rintf(outfp,"for the variable");
fprintf{outfp>"

,0/os' ->", C->outputVars[i].varName);

}
fscanl(infp)"

0/od",&(C->outputVars[i].nurnBits));
if(numfiles = 0){

fprint^outfp/W Enter number of member functions ");
fprinti(outfp,"for variable");
fprintf(outfp)"%s' ->", C->outputVars[i].varName);

}
fscanf(infp,"%d",&(C->outputVars[i].numOfMembers));
/* allocate space for member functions for the variable */
if((C->outputVars[i].membeT = (struct memberObject *)

malloc((C->outputVars[i].numOfMembers) *
sizeof(struct memberObject)))=NULL)

{
fprintf(stderr,"not enough memory for the ");
fprintf(stderr, "member functions of variable ");
fprintf|;stderr,"'%s'.\n",C->outputVars[i].varName);
exit(-l);

}
ifijuimfiles = 0)
fprintfjoutfp.'ta");
/* get name and type for member functions */
for(j=0; j < C->outputVars[i].numOfMembers; j++)

{
if(numfiles = 0){
fprintf(outfp,"\tEnter name of member");

fprintf(outfp,"function %2d", j+1);
fprinrffautfp," ->");

}
fscanf(infp,"%s", C->outputVars[i].memberfj].memName);
C->outputVars[i].member[j].type =

getType(C->ourputVars[i].memberrj].memName);

}
/• check for invalid combination of member functions */
checkMem(C->outputVars[i]);

}

void freeOutputVar(C)
/* This function is used to deallocate space for the output variables */
struct controller *C;

{
inti;
for(i=0; i < C->numOfDutputVar, i++)

{
free(C->outputVars[i].member);

}
free(C->outputVars);

}

void defineController(C)
/* This function is used to allocate space for the variables */
struct controller *C;

{
if(numfiles==0){
fprintf(outfp,"\n Enter name of controller");

fprintffautfp," >");

}
fscanffinfp/%s^->controllerName);

allocatelnput Var(C);
allocateOutputVar(C);

}

void freeVariables(C)
/* This function is used to allocate space for the variables */
struct controller *C;
{

freeInputVar(C);
freeOutputVar(C);

}

void printMemType(Type)
int Type;

{
switch(Type)

{
case TRIANGULAR:

fprintf(outfp,"\n\tTiangular");
break;

case S_FUNCTION:
fprintf(outfp,"\n\tS-Function:");
break;

case Z_FUNCTION:
fprintf(outrp,"\n\tZ-Function:");
break;

default:
fprintil[stderr,"\nprintMemType: Error in the case");
exit(l);

}
}

void printValues(member)
/* This function is used to print the values of the verticies */
struct memberObject 'member,
{

fprintf(outfp,"\n");
switch(member->type)

{

case TRIANGULAR:
fprintf{outfp,"\n\t\t\t\tleftVertex = %.31f,

member->leftVertex);
rprintffautfp.^nVMfttcenterVertex = %.31f,

member->centerVertex);
fprmtf(outfp,"\n\t\t\t\trightVertex = %.31f\

member->rightVertex);
break;

case S_FUNCTION:
fprintfi[outfp,"\n\t\t\t\tleftVertex = %.31f",

member->leftVertex);
fprintf(outfp,"\n\t\t\t\tcenterVertex = %.31f\

member-ocenterVertex);
break;

case Z_FUNCTION:
fprintf(outfp,"\n\t\t\t\tcenterVertex = %.31f,

58

member->centerVertex);
^rint^outfp/'Vn^tttVtrightVertex = %.31f\

member->rightVertex);
break;

default:
fprmtffstderr,"\nprintValues: Error in the case");
exit(l);

}
fprintftoutfp/W);

}

void printInVars(C, pValue)
/* this function is used to check the input variables */
struct controller *C;
int pValue;

{
int i j;
fprintfl;outfp,"\n\n INPUTS \n");
rprintf(outfp,"\nnumber of input varibles = %d", C->numOflnputVar);
for(i=0; i < C^numOflnpuiVar, i++)

{
fprintf(outfp,"\n\nvariable[%d] = "%s' and it has ",

i+1, C->inputVars[i].varName);
fprintf(outfp,"%d members:", C->inputVars[i].numOfMembers);
fprintf(outfp,"\n");
for(j=0; j < C->inputVars[i].numOfMembers; j++)

{
printMemType(C^>inputVars[i] .memberfjj.type);
fprintftoutfp/Xtmembeif/od] =", j+1);
fpiiirf(outfp,"%s\C^inputVarsii].memberfj].memName);
if(pValue=l)

printValues(C->inputVars[i].memberfj]);

}
fprintf|;outfp,"\n\nlower bounds = %lf\

C->inputVars[i]. lowerBound);
fprintf(outfp,"\nupper bounds = %lf,

C->inputVars[i].upperBound);
fprintf(outfp,"\ndelta = %lf\

rprinrffautfp.'Vnnum. of bits = %d",
C->inputVars[i].delta);

C->inputVars[i].numBits);

}
fprintftoutfp/tata");

}

void printOutVars(C, pValue)
/* this function is used to check the output variables */
struct controller *C;
int pValue;

{
int i j;
fjjrmtftoutfp.'Nnta OUTPUTS \n");
fprinti(outrp,"\nnumber of output varibles = %d", C->numOfDutputVar);
for(i=0; i < C->numOfDutputVar, i++)

{
fprintf(outfp,"\n\nvariable[%d] = "%s' and it has",

i+1, C->outputVars[i].varName);
fprintf(outfp,"%d members:", C->outputVars[i].numOfMembers);
fprintfl;outfp,"\n");
for(j=0; j < C->outputVars[i].numOfMembers; j++)

59

{
printMemType(C->outputVars[i].member[j].type);
fprintf(outfp,"\tmember[%d] =", j+1);
fprintf(outfp,"%s ",C->outputVars[i].member(j].memName);
if(pValue=l)

printValues(C->outputVars[i].member[j]);

}
fprintf(outfp)"\n\nlower bounds = %1F,

C->outputVars[i].lowerBound);
fprintf[outfp,"\nupper bounds = %lf\

C->outputVars[i].upperBound);
fprintf(outfp,"\ndelta = %lf\

fprintf(outfp,"\nnuni. ofbits = %d",

}
fprintf(outfp,"\n\n'');

C->outputVars[i].delta);

C->outputVars[i].numBits);

void printVariables(C, P)
/* this function is used to print all the variables */
struct controller *C;
intp,
{

fprmtf(outfp,"\n\n\tCONTROLLER:");
fprintf(outfp,"%s", C->controllerName);
prinÜnVars(C, P);
printOutVars(C, P);

}

void evalMemberCrite(member, count, valid)
/* This function is used to evaluate the criteria for a single member */
struct memberObject 'member,
double *count;
double *valid;
{

switch(member->rype)
{

case TRIANGULAR:
*count = *count + 3.0;
if(member->centerVertex >= member->leftVertex)

•valid = *valid + 1.0;
if(member->right Vertex > member->left Vertex)

•valid = »valid + 1.0;
if(member->right Vertex >= member->centerVertex)

•valid = »valid + 1.0;
break;

case S_FUNCTION:
•count = *count + 1.0;
if(member->centerVertex >= member->leftVertex)

•valid = »valid +1.0;
break;

case Z_FUNCTION:
•count = 'count + 1.0;
if(member->rightVertex >= member->centerVertex)

•valid = »valid+1.0;
break;

default:
fprintf(stderr,"\nevalMemberCrite: Error in the case");

6 0

exit(l);

}
}

void compareMemberCrite(memberOne, memberTwo, count, valid)
/* This function is used to evaluate the criteria of two member */
struct memberObject *memberOne;
struct memberObject ♦memberTwo;
double 'count;
double »valid;
{
switch(memberOne->type)
{

case TRIANGULAR:
switch(memberTwo->tvpe)

{
case TRIANGULAR:

♦count = 'count + 6.0;
if(membeiOne->left Vertex >= memterTwo->left Vertex)

♦valid = »valid+1.0;
if(memberOne->centerVertex > memberTwo->leftVertex)

♦valid = ♦valid+1.0;
if(memberOne->centerVertex > memberTwo->centerVertex)

♦valid = »valid+1.0;
if(memberOne->rightVertex > memberTwo->leftVertex)

♦valid = ♦valid+1.0;
if(memberOne->rightVertex > memberTwo->centerVertex)

»valid = ♦valid +1.0;
if(memberOne->rightVertex >= memberTwo->rightVertex)

♦valid = ♦valid+1.0;
break;

case S_FUNCTION:
fprintf(stdeiT,"\ncompareMemberCrite: Error invalid");
fprintf(stderr,"combmation of member functions!");
fprintitstderr.^^tS.FUNCTION... TRIANGULAR \n");
exit<l);
break;

case Z_FUNCTION:
♦count = ♦count + 3.0;
if(memberOne->centerVertex > memberTwo->centerVertex)

♦valid = »valid+1.0;
if(memberOne->rightVertex > memberTwo->centerVertex)

♦valid = ♦valid+1.0;
if(memberOne->rightVertex >= memberTwo->rightVertex)

♦valid = ♦valid+1.0;
break;

default:
fprintfi;stdeTr,"\ncompareMemberCrite: Error in inner case");

exit(l);

}
break;

case S_FUNCTION:
switch(memberTwo->tvpe)

{
case TRIANGULAR:

♦count = ♦count + 3.0;
if(memberOne->leftVertex >= memberTwo->leftVertex)

'valid = ♦valid +1.0;
if{memberOne->centerVertex > memberTwo->leftVertex)

♦valid = ♦valid +1.0;

61

}
}

if(memberOne->centerVertex > memberTwo->centerVertex)
♦valid = «valid* 1.0;

break;
case S_FUNCIION:

fprmtf(stden^"\ncompareMemberCrite: Error invalid");
fprintf(stderr, "combination of member functions!");
fj>rintf|;stderr("\n\n\tS_FUNCTION...S FUNCTIONS");
exit(l);
break;

case Z_FUNCTION:
•count = *count + 1.0;
if(memberOne^>centerVertex > memberTwo->centerVertex)

«valid = «valid + 1.0;
break;

default:
fprintf(stderr,"\ncompareMemberCrite: Error in inner case");

exitd);
}
break;

caseZ_FUNCTION:
switch(memberTwo->tvpe)
{

case TRIANGULAR:
fprintf(stderr,"\ncompareMemberCrite: Error invalid ");
fbrintffstderr/combmation of member functions!");
frrmrf(stderr,"\nta\tTRIANGULAR.... Z FUNCTION^");
exit(l);
break,

case S_FUNCTION:
fprmtf(stderr,"tacompareMemberCrite: Error invalid");
fprintf(stderr,"combination of member functions!");
fprintf(stderr,"\n\n\tS_FUNCTION... Z FUNCTION\n");
exit(l);
break;

case Z_FUNCnON:
fbrintf(stderr,"\ncompareMemberCrite: Error invalid");
fprintf^stderr.'combination of member functions!");
fj)rintfi;stderr,"\n\n\tZ_FUNCTION... Z_FUNCTION\n");
exit(l);
break;

default:
fbrintf{stderr>"\ncompareMemberCrite: Error in inner case");

exit(l);
}
break;

default:
fprmtf{stdeir,"\ncompareMemberCrite: Error in outer case");

exit(l);

evaluateCritefTheVar, count, valid)
/* This function will be used to determine the number the of criteria used */
I* to calculate the fitness */
struct varObject «TheVar,
double «count;
double «valid;
{

intjjc;
for(j=0; j < TheVar->numOfMembers; j++)

62

evaIMembeiCrite(TheVar->member[j], count, valid);
for(k=j-l;k>=0;k-)

compareMemberCrite{TheVar^member[j],
TheVaN>rnember[k], count, valid);

}

void evalInMemCrite(C, count, valid)
/* This function will be used to determine the number the of criteria used */
/* to calculate the fitness */
struct controller *C;
double »count;
double 'valid;
{

inti;
for(i=0; i < C->numOflnputVar, i++)

evaluateCrite(C->inputVars[i], count, valid);

}
}

void evalOutMemCrite(C, count, valid)
/* This function will be used to determine the number the of criteria used */
/* to calculate the fitness */
struct controller *C;
double »count;
double *valid;
{

inti;
for(i=0; i < C->numOfOutputVar, i++)

evaluateCrite(C->outputVars[i], count, valid);

}
}

double evalMemFitness(C)
I* This function will be used to calculate the fitness of the membership */
/* functions. The fitness is determined by the criteria for valid members */
struct controller *C;
{

double ruleCount, validCrite;
ruleCount = 0.0;
validCrite = 0.0;
evalInMemCrite(C, ftruleCount, &validCrite);
evalOutMemCrite(C, &ruleCount, ftvalidCrite);

/*

*/

fprintftstdout, "\nThe number of criteria = %.1T .ruleCount);
tprintf(stdout, "\nCrite that were valid = %.lf, validCrite);

return(validCrite/ruleCount);

}
void countMembVert(member, count)
/* This function is used to count the number of vertecies for a single member */
struct memberObject *member,
int 'count;
{

switch(member->type)

63

case "TRIANGULAR:
"count = "count + 3;
break;

case S_FUNCITON:
"count = »count + 2;
break;

case Z_FUNCnON:
"count = "count + 2;
break;

default
rprintffstderr/NncountMembVert: Error in the case");
exit(l);

}

void countVarBit(TheVar, bitCount)
/* This function will be used to determine the number the of bits of a */
/* a single variable */
struct varObject "TheVar,
int "bitCount;
{

int j;
int vertCount;
vertCount = 0;
for(j=0; j < TheVar->numOfMembers; j++)
{

countMembVert(TheVar->memberU], &vertCount);
}
"bitCount = "bitCount + (vertCount*(TheVar->numBits));

}

int countBits(C)
/" This function will be used to determine the number of bits needed */
struct controller *C;
{

int bitCount, i, j;
bitCount = 0;
for(j=0; j < C->numOflnputVar, j++)
{

countVarBit(C->inputVars[j], &bitCount);
}
for(i=0; i < C^numOfOutputVar, i-H-)
{

countVarBit(C->outputVars[i], &bitCount);
}
fprintf(stdout, "\nThe number of bits = %d.\n", bitCount);
return(bitCount);

}

vertexTypegetRealNumrjer(OTtter,start,stop^iumBits,lowerBound,delta)
/* This function is used to get real numbers from the chrome */
unsigned "critter,
int "start;
int "stop;
int numBits;
vertexType lowerBound;
vertexType delta;
{

vertexType realValue;

64

/* section of chromosome containing current integer field */
•start = *stop + 1;
*stop = *start + numBits -1;

/* printfl;"\n start = %d, stop = %d lchrom = %d", »start, »stop,
lchrom); */

/* check if enough bits remain, if not, exit program */
if(*stop > lchrom)

{
fprintf(stderr,"\nError in getRealNumber function.\n");
exit(-l);

}
realValue =((double)ithruj2int(*start, »stop, critter))/

pow(2.0, (doubleXnumBits));
realValue = realValue*delta + lowerBound;
return(realValue);

}

void getinValuesCcritter, C, start, stop)
/• This function is used to get values for the vertecies of */
/* the input variables */
unsigned *critter,
struct controller *C;
int "start;
int *stop;

{
int ij;
for(i=0; i < C^numOflnputVar, i++)

{
for(j=0'J < C->inputVars[i].numOfMembers; j++)

{
switch(C->inputVars[i].member[j].tvpe)

{
case TRIANGULAR:

C->inputVars[i].member|j].leflVertex =
getRealNumbe^critter,start,stop,C->inputVars[i].numBits,

C->inputVars[i].lowerBound, C->inputVars[i].delta);
C->inputVars[i].member[j].centerVertex =

getRealNumber(critter,start>stop,C->inputVars[i].numBits,
C->inputVars[i].loweTBound,C->inputVars[i].delta);

C->inputVars[i].member|j].rightVertex =
getRealNumber(critter,start,stop,C->inputVars[i].numBits,

C->inputVars[i].lowerBound, C->inputVars[i].delta);
breflk;

case S_FUNCTION:
C->inputVars[i].member[j].leftVertex =

getReaINumber(critter,start,stop,C^«inputVars[i].numBits,
C->inputVars[i].lowerBound,C->inputVars[i].delta);

C->inputVars[i].member[j].centerVertex =
getRealNumb^critter,start,stop,C->inputVars[i].numBits,

C^>inputVars[i].lowerBound,C->inputVars[i].delta);
break;
case Z_FUNCTION:
C->inputVars[i].member[j].centerVertex =

getReauVumber(critter)start,stop,C->inputVars[i].numBits,
C->inputVars[i].lowerBound,C->inputVars[i].delta);

C->inputVars[i].member[j].rightVertex =
getRealNumber(critter,stort,stop,C->inputVars[i].numBits,

C->inputVars[i].lowerBound,C->inputVars[i].delta);
break;

default:

65

void getValues(critter, C)
/* This function is used to get the values for the vertecies. */
unsigned "critter,
struct controller *C;
{

int start, stop;
start = 0;
stop = 0;
geÜnValues(critter, C, &start, &stop);
getOutValues(critter, C, &start, &stop);

}

void cloneInputVar(original, clone)
/* This function is used clone the input variables */
struct controller "original;
struct controller "clone;
{

intij;
for(i=0; i < clone->numOflnputVar, i++)
{

strcpy(clone->input Varsp]. varName,
original->inputVars[i].varName);

clone->inputVars[i] .numOfMembers=
original->input Vars[i] .numOfMembers;

clone->inputVars[i].lowerBound=
original->inputVars[i].lowerBound;

clone->inputVars[i].upperBound=
original->inputVars[i].upperBound;

clone->inputVars[i].delta=
original->inputVars[i].delta;

clone->inputVars[i].numBits=
original->inputVars[i].numBits;

if((clone->inputVars[i].member = (struct memberObject *)
malloc((clone->inputVars[i] .numOfMembers) *
sizeof(struct memberObject)))=NULL)

{
fbrintf(stderr,"not enough memory for the clone's");
fprintf^stderr,"member functions of variable ");
fprintf{stderr)"'%s'.\n", clone->inputVars[i]. varName);
exit(-l);

}
for(j=0; j < clone->inputVars[i]. numOfMembers; j++)
{

strcpy(clone->inputVars[i].memberfj].memName,
original->inputVars[i].member[j].memName);

clone->inputVars[i]jnember[j].rype =
original->input Vars[i]. member[j]. type;

}
}

}
void cloneOutputVar(original, clone)
/* This function is used to clone the output variables */
struct controller "original;
struct controller "clone;
{

intij;
forCiN); i < clone->numOfOutputVar, i++)
{

strcpy(clone->output Vars[i]. varName,
original->outputVars[i]. varName);

66

clone->outputVars[i].numOfMembers=
original->outputVars[i].numOfMembers;

clone->output Varsfi]. lowerBound=
original->output Vars[i]. lowerBound;

clone->outputVars[i].upperBound=
original->outputVars[i].upperBound;

clone-x>utputVars[i].delta=
original->outputVars[i].delta;

clone->outputVars[i].numBits=
original->outputVars[i].numBits;

if((clone->outputVars[i].member = (struct memberObject *)
malloc((clone->outputVars[i].numOfMembers) *
sizeof(struct memberObject)))=NULL)

{
fprintf(stderr)"not enough memory for the clone's");
fbrintf(stderr,"rnember functions of variable ");
fprintf|;stderr,'"%s'.\n">clone->outputVars[i].varName);
exit(-l);

}
fbr(j=0; j < clone->outputVars[i].numOfMembers; j++)

{
strcpy(clone->ou^)utVars[i].memberfj].memName,

original->outputVarsfi] .memberfj] .memName);
clone->outputVars[i].memberfj].type =

original->outputVar?[i].memberfj].tvpe;

}

}

void cloneController(original, clone)
/* This function is used to clone a controller */
struct controller *original;
struct controller 'clone;

{
strcpy(clone->controllerName, original->controllerName);
clone->numOflnputVar = original->numOfInputVar,
clone->numOfDutputVar = original->numOfDutputVar,
if((clone->inputVars = (struct varObject *)

malloc((clone->numOfInputVar)*sizeof(struct varObject)))=NULL)

{
fprintfi;stderr,"not enough memory for %s.\n","clone inputVars");
exit(-l);

}
if((clone->outputVars = (struct varObject *)

malloc((clone->numOfDutputVar)*sizeofi;struct varObject)))=NULL)

{
fprintf(stderr,"not enough memory for %s.\n","clone outputVars");

exit(-l);

}
cloneInputVar(original, clone);
cloneOutputVar(original, clone);

}

void store_data(int Generation)
/* This function is used to store the data to weightFile. The data will be */
/* used to test the results of the sga. */

{
FILE »fpStoreData;

67

int vertex;
char WeightFile[120]; /* File used to store the vertex for this */

/* generation.
sprinti(WeightFile,"%s.%d")VertexFUeBase,Generation);
if((fpStoreData^open(WeightFile>"w")) = NULL)

{
printfCCould not open %s\n\WeightFile);
exit(-l);

}
rprintf(fpStoreData,"%s\n"(DataFüe);
rprinri(rpStoreData,"%d\ri")NumberOfSarnples);
rprintii;rpStoreData,"%lf\n") bestfitfitness);
rprintf(fpStoreData, "%d\n",Generation);
rprintf(rpStoTeData, M%d\n",maxgen);
Q)rinrfl;fi>StoreData,"%f\n", pcross);
rprintf(fpStoreData,"%f\n", pmutation);
rprintf(rpStoreData, "%d\n\popsize);
fclose(fpStoreData);

}/* End of function store_data. */

application()
/* This routine should contain any application-dependent */
/* computations that should be performed before each OA cycle */
/* called by main() */

{
}

app_data()
/* application dependent data input, called by init_data() */
/* ask your input questions here, and put output in global variables */

{
}

app_free()
/* This routine should free any memory allocated */
/* in the application-dependent routines, called by freeall() */

{
intj;
freeVariables(&person); /* deallocate variable space */
freeRules(&ruleBase); /* deallocate rule space */
/* deallocate space for data variables */
for(j = 0; j < NumberOfSamples; j++)
{

free(InputData[j]);
free(OutputData[j]);
free(CalculatedOutput[j]);

}
free(InputData);
free(OutputData);
free(CalculatedOutput);

}

app_init()
/* Application dependent initialization routine called by initializeQ. */

{
}

68

APPENDIX D
SAMPLE RUN OF THE GA TUNER

SGA-C (vl. 1) - A Simple Genetic Algorithm |
(c) David E. Goldberg 1986, AU Rights Reserved |

C version by Robert E. Smith, U. of Alabama |
vl.l modifications by Jeff Earickson, Boeing Company

SGA Parameters

Total Population size = 50
Chromosome length (Ichrom) =210
Maximum # of generations (maxgen) = 200
Crossover probability (pcross) = 0.600000
Mutation probability (pmutation) = 0.010000

RUN 1 of 1: GENERATION 4->200

Generation 4 Accumulated Statistics:
Total Crossovers = 80, Total Mutations = 529
min = 0.347222 max = 0.430556 avg = 0.402778 sum = 20.138889
Global Best Individual so for, Generation 4:
Fitness = 0.430556:

CONTROLLER: simplePend

INPUTS

number of input varibles = 2

variable[l] = 'error' and it has 3 members:

Z-Function: memberfl] = negative

centerVertex = -0.850
rightVertex =0.711

Tiangular: member[2] = zero

leftVertex =-0.938
centerVertex = 0.195
rightVertex =0.771

S-Function: member[3] = positive

leftVertex =0.557
centerVertex = 0.711

69

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

variable[2] = T)error' and it has 3 members:

Z-Function: member[l] = negative

centerVertex = 0.527
rightVertex = -0.809

Tiangular: member[2] = zero

leftVertex =-0.498
centerVertex = -0.496
rightVertex =0.090

S-Function: member[3] = positive

leftVertex =-0.029
centerVertex = 0.947

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

■ OUTPUTS

number of output varibles = 1

variable[l] = 'current' and it has 3 members:

Z-Function: member[l] = negative

centerVertex = -0.240
rightVertex =0.586

Tiangular: member[2] = zero

leftVertex =-0.967
centerVertex = -0.848
rightVertex =0.029

S-Function: member[3] = positive

leftVertex =-0.908
centerVertex = -0.082

70

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

RUN 1 of 1: GENERATION 29->200

Generation 29 Accumulated Statistics:
Total Crossovers = 464, Total Mutations = 3085
min = 0.458333 max = 0.962314 avg = 0.795700 sum = 39.784985
Global Best Individual so far, Generation 28:
Fitness = 0.963756:

RUN 1 of 1: GENERATION 59->200

Generation 59 Accumulated Statistics:
Total Crossovers = 903, Total Mutations = 6188
min = 0.430556 max = 0.985419 avg = 0.808049 sum = 40.402465
Global Best Individual so far, Generation 59:
Fitness = 0.985419:

RUN 1 of 1: GENERATION 79->200

Generation 79 Accumulated Statistics:
Total Crossovers = 1205, Total Mutations = 8258
mm = 0.444444 max = 0.989729 avg = 0.826472 sum = 41.323584
Global Best Individual so far, Generation 78:
Fitness = 0.989907:

RUN 1 of 1: GENERATION 99->200

Generation 99 Accumulated Statistics:
Total Crossovers = 1509, Total Mutations = 10320
min = 0.430556 max-0.991671 avg = 0.776286 sum = 38.814297
Global Best Individual so far, Generation 97:
Fitness = 0.991671:

CONTROLLER: simplePend

 INPUTS

number of input varibles = 2

variable[l] = 'error1 and it has 3 members:

Z-Function: member[l] = negative

71

centerVertex = -0.650
rightVertex =0.043

Tiangular: member[2] = zero

leftVertex =-0.389
centerVertex = 0.025
rightVertex =0.502

S-Function: member[3] = positive

leftVertex =-0.012
centerVertex = 0.3'79

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

variable[2] = "Derror1 and it has 3 members:

Z-Function: memberfl] = negative

centerVertex = -0.273
rightVertex =0.018

Tiangular: member[2] = zero

leftVertex =-0.451
centerVertex = -0.199
rightVertex =0.502

S-Function: member[3] = positive

leftVertex =-0.035
centerVertex = 0.562

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

■ OUTPUTS •

number of output varibles = 1

variable[l] = 'current' and it has 3 members:

Z-Function: member[l] = negative

72

center Vertex = -0.611
rightVertex =0.047

Tiangular: member[2] = zero

left Vertex =-0.297
centerVertex = -0.178
rightVertex =0.471

S-Function: member[3] = positive

leftVertex =0.102
centerVertex = 0.369

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

RUN 1 of 1: GENERATION 199->200

Generation 199 Accumulated Statistics:
Total Crossovers = 3000, Total Mutations = 20714
min = 0.444444 max = 0.992721 avg = 0.812836 sum = 40.641800
Global Best Individual so far, Generation 191:
Fitness = 0.992738:

73

Appendix E

Rule Space for Pendulum Balancing Controller

IF error IS negative THEN current IS negative END
IF error IS negative THEN current IS zero END
IF error IS negative THEN current IS positive END
IF error IS negative AND Derror IS negative THEN current IS negative END
IF error IS negative AND Derror IS negative THEN current IS zero END
EF error IS negative AND Derror IS negative THEN current IS positive END
IF error IS negative AND Derror IS zero THEN current IS negative END
IF error IS negative AND Derror IS zero THEN current IS zero END
IF error IS negative AND Derror IS zero THEN current IS positive END
IF error IS negative AND Derror IS positive THEN current IS negative END
IF error IS negative AND Derror IS positive THEN current IS zero END
IF error IS negative AND Derror IS positive THEN current IS positive END
IF error IS zero THEN current IS negative END
IF error IS zero THEN current IS zero END
IF error IS zero THEN current IS positive END
IF error IS zero AND Derror IS negative THEN current IS negative END
IF error IS zero AND Derror IS negative THEN current IS zero END
IF error IS zero AND Derror IS negative THEN current IS positive END
IF error IS zero AND Derror IS zero THEN current IS negative END
IF error IS zero AND Derror IS zero THEN current IS zero END
IF error IS zero AND Derror IS zero THEN current IS positive END
IF error IS zero AND Derror IS positive THEN current IS negative END
IF error IS zero AND Derror IS positive THEN current IS zero END
IF error IS zero AND Derror IS positive THEN current IS positive END
IF error IS positive THEN current IS negative END
IF error IS positive THEN current IS zero END
IF error IS positive THEN current IS positive END
IF error IS positive AND Derror IS negative THEN current IS negative END
IF error IS positive AND Derror IS negative THEN current IS zero END
IF error IS positive AND Derror IS negative THEN current IS positive END
IF error IS positive AND Derror IS zero THEN current IS negative END
IF error IS positive AND Derror IS zero THEN current IS zero END
IF error IS positive AND Derror IS zero THEN current IS positive END
IF error IS positive AND Derror IS positive THEN current IS negative END
IF error IS positive AND Derror IS positive THEN current IS zero END
IF error IS positive AND Derror IS positive THEN current IS positive END
IF Derror IS negative THEN current IS negative END
IF Derror IS negative THEN current IS zero END
IF Derror IS negative THEN current IS positive END
IF Derror IS zero THEN current IS negative END
IF Derror IS zero THEN current IS zero END
IF Derror IS zero THEN current IS positive END

74

IF Derror IS positive THEN current IS negative END
IF Derror IS positive THEN current IS zero END
IF Derror IS positive THEN current IS positive END

75

Appendix F

Rules Evolved by the Genetic Algorithm

IF error IS negative THEN current IS positive END

IF error IS zero AND Derror IS negative THEN current IS positive END

IF error IS zero AND Derror IS zero THEN current IS zero END

IF error IS positive THEN current IS negative END

IF error IS positive AND Derror IS negative THEN current IS positive END

IF Derror IS positive THEN current IS negative END

CONTROLLER: simplePendulum

 INPUTS
number of input varibles = 2

variablefl] = 'error' and it has 3 members:

Z-Function: memberfl] = negative

centerVertex = -0.443
rightVertex =-0.172

Tiangular: member[2] = zero

leftVertex =-0.955
centerVertex = 0.291
rightVertex =0.301

S-Function: member[3] = positive

leftVertex =-0.014
centerVertex = 0.938

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

76

variable[2] = Derror' and it has 3 members:

Z-Function: member[l] = negative

centerVertex = -0.504
rightVertex =-0.172

Tiangular: member[2] = zero

leftVertex =-0.365
centerVertex = -0.244
rightVertex =0.746

S-Function: member[3] = positive

leftVertex =-0.014
centerVertex = 0.680

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

OUTPUTS

number of output varibles = 1

variable[l] = 'current' and it has 3 members:

Z-Function: member[l] = negative

centerVertex = -0.283
rightVertex =-0.152

Tiangular: member[2] = zero

leftVertex =-0.016
centerVertex = 0.102
rightVertex =0.256

S-Function: member[3] = positive

77

left Vertex =-0.012
centerVertex = 0.566

lower bounds = -1.000000
upper bounds = 1.000000
delta = 2.000000
num. of bits = 10

The number of criteria = 36
Crite that were valid = 36

Mean Square Error = 0.039

78

Appendix G

Rule Space for Tank Recognition Problem

IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
EFin
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in
IF in

IS low THEN class IS low END
IS low THEN class IS med END
IS low THEN class IS high END
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND
IS low AND

n2 IS low THEN class IS low END
n2 IS low THEN class IS med END
n2 IS low THEN class IS high END
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND
n2 IS low AND

n3 IS low THEN class IS low END
n3 IS low THEN class IS med END
n3 IS low THEN class IS high END
n3 IS med THEN class IS low END
n3 IS med THEN class IS med END
n3 IS med THEN class IS high END
n3 IS high THEN class IS low END
n3 IS high THEN class ISmed END
n3 IS high THEN class IS high END

n2 IS med THEN class IS low END
n2 IS med THEN class IS med END
n2 IS med THEN class IS high END
n2 IS med AND in3 IS low THEN class IS low END
n2 IS med AND in3 IS low THEN class IS med END
n2 IS med AND in3 IS low THEN class IS high END
n2 IS med AND in3 IS med THEN class IS low END
n2 IS med AND in3 IS med THEN class IS med END
n2 IS med AND in3 IS med THEN class IS high END
n2 IS med AND in3 IS high THEN class IS low END
n2 IS med AND in3IS high THEN class ISmed END
n2 IS med AND in3 IS high THEN class IS high END
n2 IS high THEN class IS low END
n2 IS high THEN class ISmed END
n2 IS high THEN class IS high END
n2 IS high AND in3 IS low THEN class IS low END
n2 IS high AND in3 IS low THEN class ISmed END
n2 IS high AND in3 IS low THEN class IS high END
n2 IS high AND in3 ISmed THEN class IS low END
n2 IS high AND in3 ISmed THEN class IS med END
n2 IS high AND in3 ISmed THEN class IS high END
n2 IS high AND in3 IS high THEN class IS low END
n2 IS high AND in3 IS high THEN class ISmed END
n2 IS high AND in3 IS high THEN class IS high END
n3 IS low THEN class IS low END
n3 IS low THEN class IS med END
n3 IS low THEN class IS high END

79

IF in 1 IS low AND in3 IS med THEN class IS low END
IF in 1 IS low AND in3 IS med THEN class IS med END
IF in 1 IS low AND in3 IS med THEN class IS high END
IF in 1 IS low AND in3 IS high THEN class IS low END
IF in 1 IS low AND in3 IS high THEN class IS med END
IF in 1 IS low AND in3 IS high THEN class IS high END
IF in 1 IS med THEN class IS low END
IF in 1 IS med THEN class IS med END
IF in 1 IS med THEN class IS high END
IF in 1 IS med AND in2 IS low THEN class IS low END
IF in 1 IS med AND in2 IS low THEN class IS med END
IF in 1 IS med AND in2 IS low THEN class IS high END
IF in 1 IS med AND in2 IS low AND in3 IS low THEN class IS low END
IF in 1 IS med AND in2 IS low AND in3 IS low THEN class IS med END
IF in 1 IS med AND in2 IS low AND in3 IS low THEN class IS high END
IF in 1 IS med AND in2 IS low AND in3 IS med THEN class IS low END
IF in 1 IS med AND in2 IS low AND in3 IS med THEN class IS med END
IF in 1 IS med AND in2 IS low AND in3 IS med THEN class IS high END
IF in 1 IS med AND in2 IS low AND in3 IS high THEN class IS low END
IF in 1 IS med AND in2 IS low AND in3 is high THEN class ISmed END
IF in 1 IS med AND in2 IS low AND in3 IS high THEN class IS high END
IF in 1 IS med AND in2 IS med THEN class IS low END
IF in 1 IS med AND in2 IS med THEN class IS med END
IF in 1 IS med AND in2 IS med THEN class IS high END

n3 IS low THEN class IS low END
n3 IS low THEN class IS med END
n3 IS low THEN class IS high END
n3 IS med THEN class IS low END
n3 IS med THEN class IS med END
n3 IS med THEN class IS high END
n3 IS high THEN class IS low END
n3 IS high THEN class ISmed END
n3 IS high THEN class IS high END

IF in 1 IS med AND in2 IS med AND
DF inl IS med AND in2 IS med AND
IF in 1 IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS med AND
IF inl IS med AND in2 IS high THEN class IS low END
IF inl IS med AND in2 IS high THEN class ISmed END
IF inl IS med AND in2 IS high THEN class IS high END
IF inl IS med AND in2 IS high AND in3 IS low THEN class IS low END
IF inl IS med AND in2 IS high AND in3 IS low THEN class ISmed END
IF inl IS med AND in2 IS high AND in3 IS low THEN class IS high END
IF inl IS med AND in2 IS high AND in3 ISmed THEN class IS low END
IF inl IS med AND in2 IS high AND in3 ISmed THEN class IS med END
IF inl IS med AND in2 IS high AND in3 ISmed THEN class IS high END
IF inl IS med AND in2 IS high AND in3 IS high THEN class IS low END
IF inl IS med AND in2 IS high AND in3 IS high THEN class ISmed END
IF inl IS med AND in2 IS high AND in3 IS high THEN class IS high END

80

IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND
IFinl ISmedAND

n3 IS low THEN class IS low END
n3 IS low THEN class IS med END
n3 IS low THEN class IS high END
n3 IS med THEN class IS low END
n3 IS med THEN class IS med END
n3 IS med THEN class IS high END
n3 IS high THEN class IS low END
n3 IS high THEN class IS med END
n3 IS high THEN class IS high END

IF in 1 IS high THEN class IS low END
IF in 1 IS high THEN class IS med END
IF in 1 IS high THEN class IS high END
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND
IFinl IS high AND

n2 IS low THEN class IS low END
n2 IS low THEN class IS med END
n2 IS low THEN class IS high END
n2 IS low AND in3 IS low THEN class IS low END
n2 IS low AND in3 IS low THEN class ISmed END
n2 IS low AND in3 IS low THEN class IS high END
n2 IS low AND in3 ISmed THEN class IS low END
n2 IS low AND in3 ISmed THEN class IS med END
n2 IS low AND in3 ISmed THEN class IS high END
n2 IS low AND in3 IS high THEN class IS low END
n2 IS low AND in3 IS high THEN class ISmed END
n2 IS low AND in3 IS high THEN class IS high END
n2 ISmed THEN class IS low END
n2 ISmed THEN class IS med END
n2 ISmed THEN class IS high END
n2 ISmed AND in3 IS low THEN class IS low END
n2 ISmed AND in3 IS low THEN class IS med END
n2 IS med AND in3 IS low THEN class IS high END
n2 ISmed AND in3 IS med THEN class IS low END
n2 ISmed AND in3 IS med THEN class IS med END
n2 ISmed AND in3 IS med THEN class IS high END
n2 ISmed AND in3 IS high THEN class IS low END
n2 ISmed AND in3 IS high THEN class ISmed END
n2 ISmed AND in3 IS high THEN class IS high END
n2 IS high THEN class IS low END
n2 IS high THEN class ISmed END
n2 IS high THEN class IS high END
n2 IS high AND in3 IS low THEN class IS low END
n2 IS high AND in3 IS low THEN class ISmed END
n2 IS high AND in3 IS low THEN class IS high END
n2 IS high AND in3 ISmed THEN class IS low END
n2 IS high AND in3 ISmed THEN class IS med END
n2 IS high AND in3 ISmed THEN class IS high END

81

IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND
IF in2 IS low AND

IF inl IS.high AND in2 IS high AND in3 IS high THEN class IS low END
IF in 1 IS high AND in2 IS high AND in3 IS high THEN class ISmed END
IF inl IS high AND in2 IS high AND in3 IS high THEN class IS high END
IF inl IS high AND in3 IS low THEN class IS low END
IF inl IS high AND in3 IS low THEN class ISmed END
IF inl IS high AND in3 IS low THEN class IS high END
IF inl IS high AND in3 ISmed THEN class IS low END
IF inl IS high AND in3 ISmed THEN class IS med END
IF inl IS high AND in3 ISmed THEN class IS high END
IF inl IS high AND in3 IS high THEN class IS low END
IF inl IS high AND in3 IS high THEN class ISmed END
IF inl IS high AND in3 IS high THEN class IS high END
IF in2 IS low THEN class IS low END
IF in2 IS low THEN class IS med END
IF in2 IS low THEN class IS high END

in3 IS low THEN class IS low END
in3 IS low THEN class IS med END
in3 IS low THEN class IS high END
in3 IS med THEN class IS low END
in3 IS med THEN clas* IS med END
in3 IS med THEN class IS high END
in3 IS high THEN class IS low END
in3 IS high THEN class ISmed END
in3 IS high THEN class IS high END

IF in2 IS med THEN class IS low END
EF in2 IS med THEN class IS med END
IF in2 IS med THEN class IS high END
IF in2 IS med AND in3 IS low THEN class IS low END
IF in2 IS med AND in3 IS low THEN class IS med END
IF in2 IS med AND in3 IS low THEN class IS high END
IF in2 IS med AND in3 IS med THEN class IS low END
IF in2 IS med AND in3 IS med THEN class IS med END
IF in2 IS med AND in3 IS med THEN class IS high END
IF in2 IS med AND in3 IS high THEN class IS low END
IF in2 IS med AND in3 IS high THEN class ISmed END
IF in2 IS med AND in3 IS high THEN class IS high END
IF in2 IS high THEN class IS low END
IF in2 IS high THEN class IS med END
IF in2 IS high THEN class IS high END
BF in2 IS high AND in3 IS low THEN class IS low END
IF in2 IS high AND in3 IS low THEN class ISmed END
IF in2 IS high AND in3 IS low THEN class IS high END
IF in2 IS high AND in3 ISmed THEN class IS low END
IF in2 IS high AND in3 ISmed THEN class IS med END
IF in2 IS high AND in3 ISmed THEN class IS high END

82

IF in2IS
IF in2IS
IF in2IS
IF in3IS
IF in3IS
IF m3IS
IF n3IS
IFi n3IS
IFi n3IS
IF i n3IS
IFi n3IS
IFi n3IS

high AND in3 IS high THEN class IS low END
high AND in3 IS high THEN class ISmed END
high AND in3 IS high THEN class IS high END
low THEN class IS low END
low THEN class IS med END
low THEN class IS high END
med THEN class IS low END
med THEN class IS med END
med THEN class IS high END
high THEN class IS low END
high THEN class ISmed END
high THEN class IS high END

83

Appendix H

Rules Evolved by the Genetic Algorithm

IF inl IS negative AND in3 IS negative THEN class IS positive END

IF inl IS positive THEN class IS positive END

IF in2 IS negative AND in3 IS negative THEN class IS negative END

IF in2 IS negative AND in3 IS negative THEN class IS positive END

IF in2 IS positive AND in3 IS negative THEN class IS negative END

IF in3 IS negative THEN class IS negative END

IF in3 IS positive THEN class IS positive END

Mean Square Error = 0.414
Floor-Ceiling Mean Square Error = 0.498
Floor-Ceiling Percent Correctly Classifieu - 394/516 = 76.36

84

DISTRIBUTION LIST

AUL/LSE
Bldg 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424 1 cy

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 2 cys

AFSAA/SAI
1580 Air Force Pentagon
Washington, DC 20330-1580 1 cy

PL/SUL
Kirtland AFB, NM 87117-5776 2 cys

PL/HO
Kirtland AFB, NM 87117-5776 ley

Official Record Copy
PL/VTS/Ross Wainwright
Kirtland AFB, NM 87117-5776 2 cys

PL/VT
Dr. Janet Fender
Kirtland AFB, NM 87117-5776 1 cy

85

